157 nm has been explored as a lithographic technology for several years on small field imaging tools with encouraging results. Significant progress has occurred in tool platform design, resist performance, and optical material quality. However, a major test of a new lithography comes when full field, scanned images can be produced as this becomes a crucial test of system performance and uniformity. We report on early results from a 22 mm x 26 mm (slot x scan) field Micrascan VII 157 nm lithography scanner obtained using a binary reticle. In addition, a full field alternating phase shift reticle was fabricated on modified fused silica 1 and used to extend the imaging capability. Resolution and uniformity data from both reticles will be presented. The lithographic performance will also be compared to simulations using predicted performance from the scanner.
157nm lithography is currently considered as the main technology for the manufacturing of critical 65nm node layers and beyond. After a number of potential show stoppers of 157nm have been removed in the last three years, the final phase of development will now start based on the first full-field step and scan exposure systems, that will be inserted in the next 6 months. This paper describes the status and progress of the IMEC 157nm program, that is aiming to remove the remaining 157nm engineering challenges. Despite the fact that the first full field scanner (ASML Micrascan VII) will ship next month to IMEC, the investigation on a number of full-field issues already started. Results on reticle handling including vacuum ultra violet cleaning, on hard pellicle printing and on 157nm resist full field patterning are discussed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.