Purpose: The purpose of this study was to test the hypothesis that circulating tumor cells (CTCs) are present in patients many years after mastectomy without evidence of disease and that these CTCs are shed from persisting tumor in patients with breast cancer dormancy.Experimental Design: We searched for CTCs in 36 dormancy candidate patients and 26 age-matched controls using stringent criteria for cytomorphology, immunophenotype, and aneusomy.Results: Thirteen of 36 dormancy candidates, 7 to 22 years after mastectomy and without evidence of clinical disease, had CTCs, usually on more than one occasion. Only 1 of 26 controls had a possible CTC (no aneusomy). The statistical difference of these two distributions was significant (exact P ؍ 0.0043). The CTCs in patients whose primary breast cancer was just removed had a half-life measured in 1 to 2.4 hours. Conclusions:The CTCs that are dying must be replenished every few hours by replicating tumor cells somewhere in the tissues. Hence, there appears to be a balance between tumor replication and cell death for as long as 22 years in dormancy candidates. We conclude that this is one mechanism underlying tumor dormancy.
Expression cDNA cloning and structural analysis of the human keratinocyte growth factor receptor (KGFR) revealed identity with one of the fibroblast growth factor (FGF) receptors encoded by the bek gene (FGFR-2), except for a divergent stretch of 49 amino acids in their extracellular domains. Binding assays demonstrated that the KGFR was a high-affinity receptor for both KGF and acidic FGF, while FGFR-2 showed high affinity for basic and acidic FGF but no detectable binding by KGF. Genomic analysis of the bek gene revealed two alternative exons responsible for the region of divergence between the two receptors. The KGFR transcript was specific to epithelial cells, and it appeared to be differentially regulated with respect to the alternative FGFR-2 transcript. Thus, two growth factor receptors with different ligand-binding specificities and expression patterns are encoded by alternative transcripts of the same gene.
Amplification and overexpression of the HER-2 oncogene in breast cancer is felt to be stable over the course of disease and concordant between primary tumor and metastases. Therefore, patients with HER-2-negative primary tumors rarely will receive anti-Her-2 antibody (trastuzumab, Herceptin) therapy. A very sensitive blood test was used to capture circulating tumor cells (CTCs) and evaluate their HER-2 gene status by fluorescence in situ hybridization. The HER-2 status of the primary tumor and corresponding CTCs in 31 patients showed 97% agreement, with no false positives. In 10 patients with HER-2-positive tumors, the HER-2͞chromosome enumerator probe 17 ratio in each tumor was about twice that of the corresponding CTCs (mean 6.64 ؎ 2.72 vs. 2.8 ؎ 0.6). Hence, the ratio of the CTCs is a reliable surrogate marker for the expected high ratio in the primary tumor. Her-2 protein expression of 10 CTCs was sufficient to make a definitive diagnosis of the HER-2 gene status of the whole population of CTCs in 19 patients with recurrent breast cancer. Nine of 24 breast cancer patients whose primary tumor was HER-2-negative each acquired HER-2 gene amplification in their CTCs during cancer progression, i.e., 37.5% (95% confidence interval of 18.8 -59.4%). Four of the 9 patients were treated with Herceptin-containing therapy. One had a complete response and 2 had a partial response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.