Estimating the 6D pose of objects using only RGB images remains challenging because of problems such as occlusion and symmetries. It is also difficult to construct 3D models with precise texture without expert knowledge or specialized scanning devices. To address these problems, we propose a novel pose estimation method, Pix2Pose, that predicts the 3D coordinates of each object pixel without textured models. An auto-encoder architecture is designed to estimate the 3D coordinates and expected errors per pixel. These pixel-wise predictions are then used in multiple stages to form 2D-3D correspondences to directly compute poses with the PnP algorithm with RANSAC iterations. Our method is robust to occlusion by leveraging recent achievements in generative adversarial training to precisely recover occluded parts. Furthermore, a novel loss function, the transformer loss, is proposed to handle symmetric objects by guiding predictions to the closest symmetric pose. Evaluations on three different benchmark datasets containing symmetric and occluded objects show our method outperforms the state of the art using only RGB images.
We propose a decentralized variant of Monte Carlo tree search (MCTS) that is suitable for a variety of tasks in multi-robot active perception. Our algorithm allows each robot to optimize its own actions by maintaining a probability distribution over plans in the joint-action space. Robots periodically communicate a compressed form of their search trees, which are used to update the joint distribution using a distributed optimization approach inspired by variational methods. Our method admits any objective function defined over robot action sequences, assumes intermittent communication, is anytime, and is suitable for online replanning. Our algorithm features a new MCTS tree expansion policy that is designed for our planning scenario. We extend the theoretical analysis of standard MCTS to provide guarantees for convergence rates to the optimal payoff sequence. We evaluate the performance of our method for generalized team orienteering and online active object recognition using real data, and show that it compares favorably to centralized MCTS even with severely degraded communication. These examples demonstrate the suitability of our algorithm for real-world active perception with multiple robots.
Developing robot perception systems for recognizing objects in the real-world requires computer vision algorithms to be carefully scrutinized with respect to the expected operating domain. This demands large quantities of ground truth data to rigorously evaluate the performance of algorithms. This paper presents the EasyLabel tool for easily acquiring high quality ground truth annotation of objects at the pixellevel in densely cluttered scenes. In a semi-automatic process, complex scenes are incrementally built and EasyLabel exploits depth change to extract precise object masks at each step. We use this tool to generate the Object Cluttered Indoor Dataset (OCID) that captures diverse settings of objects, background, context, sensor to scene distance, viewpoint angle and lighting conditions. OCID is used to perform a systematic comparison of existing object segmentation methods. The baseline comparison supports the need for pixel-and object-wise annotation to progress robot vision towards realistic applications. This insight reveals the usefulness of EasyLabel and OCID to better understand the challenges that robots face in the real-world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.