Self-efficacy for controlling upsetting thoughts may be particularly effective for caregivers who report high burden scores, attenuating the impact of burden on caregivers' distress (depression and anxiety).
Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still remains an active research challenge. Much of the existing literature to date has focused on applying machine learning techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable ground truth information from which to build recognition models, these techniques often do not function well when implemented in near real time applications. This paper presents the application of a multivariate online change detection algorithm to dynamically detect the starting position of windows for the purposes of activity recognition.
As the demographics of many countries shift towards an ageing population it is predicted that the prevalence of diseases affecting cognitive capabilities will continually increase. One approach to enabling individuals with cognitive decline to remain in their own homes is through the use of cognitive prosthetics such as reminding technology. However, the benefit of such technologies is intuitively predicated upon their successful adoption and subsequent use. Within this paper we present a knowledge-based feature set which may be utilized to predict technology adoption amongst Persons with Dementia (PwD). The chosen feature set is readily obtainable during a clinical visit, is based upon real data and grounded in established research. We present results demonstrating 86% accuracy in successfully predicting adopters/non-adopters amongst PwD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.