These data inform interventional strategies relevant to drug delivery, dosing, and diagnostics to prevent the development of acquired resistance. The role of high intracavitary penetration as a biomarker of antibiotic efficacy, when assessing new regimens, requires clarification.
There is a significant need for small diameter vascular grafts to be used in peripheral vascular surgery; however autologous grafts are not always available, synthetic grafts perform poorly and allografts and xenografts degenerate, dilate and calcify after implantation. We hypothesized that chemical stabilization of acellular xenogenic arteries would generate off-the-shelf grafts resistant to thrombosis, dilatation and calcification. To test this hypothesis, we decellularized porcine renal arteries, stabilized elastin with penta-galloyl glucose and collagen with carbodiimide / activated heparin and implanted them as transposition grafts in the abdominal aorta of rats as direct implants and separately as indirect, isolation-loop implants. All implants resulted in high patency and animal survival rates, ubiquitous encapsulation within a vascularized collagenous capsule, and exhibited lack of lumen thrombogenicity and no graft wall calcification. Peri-anastomotic neo-intimal tissue overgrowth was a normal occurrence in direct implants; however this reaction was circumvented in indirect implants. Notably, implantation of non-treated control scaffolds exhibited marked graft dilatation and elastin degeneration; however PGG significantly reduced elastin degradation and prevented aneurismal dilatation of vascular grafts. Overall these results point to the outstanding potential of crosslinked arterial scaffolds as small diameter vascular grafts.
Although the mode of graft deployment has changed over the years, the problem of an absent surface endothelium remains, whether small- to medium-diameter grafts are surgically implanted or placed endovascularly as “covered stents.” In contrast to humans, most animal models experience progressive transanastomotic endothelial outgrowth. Together with graft lengths that were too short, the clinically irrelevant transanastomotic endothelialization inadvertently led to early endothelial confluence in the vast majority of experimental vascular graft studies pre-empting or concealing alternative modes of endothelialization. The isolation loop-graft model we propose allows the long-term differentiation of the different modes of endothelialization in a small animal screening model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.