Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) has been employed to determine how effectively bio/organic molecules associated with the mineral thenardite (Na 2 SO 4 ) can be detected. GALDI is based on the ability of the mineral host to assist desorption and ionization of bio/organic molecules without additional sample preparation. When glycine was mixed with thenardite, glycine was deprotonated to produce C 2 H 4 NO − 2 at m/z 74.025. The combination of stearic acid with thenardite produced a complex cluster ion at m/z 390.258 in the negative mode, which was assigned a composition of C 18 H 39 O 7 Na − . A natural sample of thenardite from Searles Lake in California also produced a peak at m/z 390.260. The bio/organic signatures in both the laboratory-based and natural samples were heterogeneously dispersed as revealed by chemical imaging. The detection limits for the stearic acid and thenardite combination were estimated to be 3 parts per trillion or ∼7 zeptomoles (10 −21 ) per laser spot. Attempts to improve the signal-to-noise ratio by co-adding FTICR-MS data predetermined to contain the biosignatures of interest revealed problems due to a lack of phase coherence between data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.