Background : We have shown that pulmonary exposure to fine particulate matter (PM) impairs endothelium dependent dilation in systemic arterioles. Ultrafine PM has been suggested to be inherently more toxic by virtue of its increased surface area. The purpose of this study was to determine if ultrafine PM (or nanoparticle) inhalation produces greater microvascular dysfunction than fine PM. Rats were exposed to fine or ultrafine TiO 2 aerosols (primary particle diameters of 1 µm and ~21 nm, respectively) at concentrations which do not alter bronchoalveolar lavage markers of pulmonary inflammation or lung damage.
The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as polymorphonuclear leukocytes (PMNLs). In ROFA- and TiO2-exposed rats, MPO was found in PMNLs adhering to the systemic microvascular wall. Evidence suggests that some of this MPO had been deposited in the microvascular wall. There was also evidence for oxidative stress in the microvascular wall. These results indicate that after PM exposure, the impairment of endothelium-dependent dilation in the systemic microcirculation coincides with PMNL adhesion, MPO deposition, and local oxidative stress. Collectively, these microvascular observations are consistent with events that contribute to the disruption of the control of peripheral resistance and/or cardiac dysfunction associated with PM exposure.
Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m3 chamber and in a small room (32.7 m3) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color.
Acute exposure to airborne pollutants, such as solid particulate matter (PM), increases the risk of cardiovascular dysfunction, but the mechanisms by which PM evokes systemic effects remain to be identified. The purpose of this study was to determine if pulmonary exposure to a PM surrogate, such as residual oil fly ash (ROFA), affects endothelium-dependent dilation in the systemic microcirculation. Rats were intratracheally instilled with ROFA at 0.1, 0.25, 1 or 2 mg/rat 24 hr before experimental measurements. Rats intratracheally instilled with saline or titanium dioxide (0.25 mg/rat) served as vehicle or particle control groups, respectively. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar dilator responses to the Ca2+ ionophore A23187, administered by ejection via pressurized micropipette into the arteriolar lumen. We used analysis of bronchoalveolar lavage (BAL) samples to monitor identified pulmonary inflammation and damage. To determine if ROFA exposure affected arteriolar nitric oxide sensitivity, sodium nitroprusside was iontophoretically applied to arterioles of rats exposed to ROFA. In saline-treated rats, A23187 dilated arterioles up to 72 ± 7% of maximum. In ROFA- and TiO2-exposed rats, A23187-induced dilation was significantly attenuated. BAL fluid analysis revealed measurable pulmonary inflammation and damage after exposure to 1 and 2 mg ROFA (but not TiO2 or < 1 mg ROFA), as evidenced by significantly higher polymorphonuclear leukocyte cell counts, enhanced BAL albumin levels, and increased lactate dehydrogenase activity in BAL fluid. The sensitivity of arteriolar smooth muscle to NO was similar in saline-treated and ROFA-exposed rats, suggesting that pulmonary exposure to ROFA affected endothelial rather than smooth muscle function. A significant increase in venular leukocyte adhesion and rolling was observed in ROFA-exposed rats, suggesting local inflammation at the systemic microvascular level. These results indicate that pulmonary PM exposure impairs systemic endothelium-dependent arteriolar dilation. Moreover, because rats exposed to < 1 mg ROFA or TiO2 did not exhibit BAL signs of pulmonary damage or inflammation, it appears that PM exposure can impair systemic microvascular function independently of detectable pulmonary inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.