We can be motivated when reward depends on performance, or merely by the prospect of a guaranteed reward. Performance-dependent (contingent) reward is instrumental, relying on an internal action-outcome model, whereas motivation by guaranteed reward may minimise opportunity cost in reward-rich environments. Competing theories propose that each type of motivation should be dependent on dopaminergic activity. We contrasted these two types of motivation with a rewarded saccade task, in patients with Parkinson’s disease (PD). When PD patients were ON dopamine, they had greater response vigour (peak saccadic velocity residuals) for contingent rewards, whereas when PD patients were OFF medication, they had greater vigour for guaranteed rewards. These results support the view that reward expectation and contingency drive distinct motivational processes, and can be dissociated by manipulating dopaminergic activity. We posit that dopamine promotes goal-directed motivation, but dampens reward-driven vigour, contradictory to the prediction that increased tonic dopamine amplifies reward expectation
We can be motivated when reward depends on performance, or merely by the prospect of a guaranteed reward. Performance-dependent (contingent) reward is instrumental, relying on an internal action-outcome model, whereas motivation by guaranteed reward may serve to minimise opportunity cost in reward-rich environments. Competing theories propose that each type of motivation should be dependent on dopaminergic activity. We contrasted these two types of motivation with a rewarded saccade task, in patients with Parkinson's disease (PD). When PD patients were ON dopamine, they had greater response vigour (peak saccadic velocity) for contingent rewards, whereas when PD patients were OFF medication, they had greater vigour for guaranteed rewards. These results support the view that reward expectation and contingency drive distinct motivational processes, and can be dissociated by manipulating dopaminergic activity. We posit that dopamine is necessary for goal-directed motivation, but dampens reward-driven vigour, challenging the theory that tonic dopamine encodes reward expectation.
Mechanisms underlying visual imagery, the ability to create vivid mental representations of a scene in the absence of sensory input, remain to be fully understood. Some previous studies have proposed that visual imagery might be related to visual short-term memory (STM), with a common mechanism involving retention of visual information over short periods of time. Other observations have shown a strong relationship between visual imagery and functional activity in the hippocampus and primary visual cortex, both regions also associated with visual STM. Here we examined the relationship of visual imagery to STM and hippocampal and primary visual cortex volumes, first in a large sample of healthy people across a large age range ( N = 229 behavioural data; N = 56 MRI data in older participants) and then in patients with Alzheimer's disease and Parkinson's disease ( N = 19 in each group compared to 19 age-matched healthy controls). We used a variant of the “What was where?” visual object-location binding task to assess the quality of remembered information over short delays. In healthy people, no evidence of a relationship between the vividness of visual imagery and any visual STM performance parameter was found. However, there was a significant positive correlation between visual imagery and the volumes of the hippocampus and primary visual cortex. Although visual STM performance was significantly impaired in patients with Alzheimer's disease, their vividness of visual imagery scores were comparable to those of age-matched elderly controls and patients with Parkinson's disease. Despite hippocampal volumes also being reduced in Alzheimer's patients, there appeared to be no impact on their self-reported visual imagery. In conclusion, visual imagery was not significantly related to visual STM performance, either in healthy controls or Alzheimer's or Parkinson's disease but it was related to hippocampal and visual cortex volume in healthy people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.