Prostaglandin (PG)E2 is a potent mediator of pain and inflammation, and high levels of this lipid mediator are observed in numerous disease states. The inhibition of PGE2 production to control pain and to treat diseases such as rheumatoid arthritis to date has depended on nonsteroidal antiinflammatory agents such as aspirin. However, these agents inhibit the synthesis of all prostanoids. To produce biologically active PGE2, PGE synthases catalyze the isomerization of PGH2 into PGE2. Recently, several PGE synthases have been identified and cloned, but their role in inflammation is not clear. To study the physiological role of the individual PGE synthases, we have generated by targeted homologous recombination a mouse line deficient in microsomal PGE synthase 1 (mPGES1) on the inbred DBA͞1lacJ background. mPGES1-deficient (mPGES1 ؊/؊ ) mice are viable and fertile and develop normally compared with wild-type controls. However, mPGES1 ؊/؊ mice displayed a marked reduction in inflammatory responses compared with mPGES1 ؉/؉ mice in multiple assays. Here, we identify mPGES1 as the PGE synthase that contributes to the pathogenesis of collagen-induced arthritis, a disease model of human rheumatoid arthritis. We also show that mPGES1 is responsible for the production of PGE 2 that mediates acute pain during an inflammatory response. These findings suggest that mPGES1 provides a target for the treatment of inflammatory diseases and pain associated with inflammatory states.arthritis ͉ inflammation ͉ macrophage ͉ knockout ͉ PGE2
Microsomal prostaglandin E synthase (mPGES)-1 is one of several prostaglandin E synthases involved in prostaglandin H 2 (PGH2) metabolism. In the present report, we characterize the contribution of mPGES-1 to cellular PGH2 metabolism in murine macrophages by studying the synthesis of eicosanoids and expression of eicosanoid metabolism enzymes in wild type and mPGES-1-deficient macrophages. Thioglycollate-elicited macrophages isolated from mPGES-1؊/؊ animals and genetically matched wild type controls were stimulated with diverse pro-inflammatory stimuli. Prostaglandins were released in the following order of decreasing abundance from wild type macrophages stimulated with lipopolysaccharide: prostaglandin E 2 (PGE2) > thromboxane B 2 (TxB2) > 6-keto prostaglandin F 1␣ (PGF1␣), prostaglandin F 2␣ (PGF2␣), and prostaglandin D 2 (PGD2). In contrast, we detected in mPGES-1؊/؊ macrophages a >95% reduction in PGE2 production resulting in the following altered prostaglandin profile: TxB2 > 6-keto PGF1␣ and PGF2␣ > PGE2, despite the comparable release of total prostaglandins. No significant change in expression pattern of key prostaglandin-synthesizing enzymes was detected between the genotypes. We then further profiled genotype-related differences in the eicosanoid profile using macrophages pre-stimulated with lipopolysaccharide followed by a 10-min incubation with 10 M
BackgroundInterventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARδ agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice.Methodology/Principal FindingsMale ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved.Conclusions/SignificanceThe data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.