The metabolism of [(14)C]-diclofenac in mice was investigated following a single oral dose of 10 mg/kg. The majority of the drug-related material was excreted in the urine within 24 h of administration (49.7 %). Liquid chromatographic analyses of urine and faecal extracts revealed extensive metabolism to at least 37 components, with little unchanged diclofenac excreted. Metabolites were identified using a hybrid linear ion-trap mass spectrometer via exact mass determinations of molecular ions and subsequent multi-stage fragmentation. The major routes of metabolism identified included: 1) conjugation with taurine; and 2) hydroxylation (probably at the 4'-and 5-arene positions) followed by conjugation to taurine, glucuronic acid or glucose. Ether, rather than acyl glucuronidation, predominated. There was no evidence for p-benzoquinone-imine formation (i.e. no glutathione or mercapturic acid conjugates were detected). A myriad of novel minor drug-related metabolites were also detected, including ribose, glucose, sulfate and glucuronide ether-linked conjugates of hydroxylated diclofenac derivatives. Combinations of these hydroxylated derivatives with acyl conjugates (glucose, glucuronide and taurine) or N-linked sulfation or glucosidation were also observed. Acyl- or amide-linked-conjugates of benzoic acid metabolites and several indolinone derivatives with further hydroxylated and conjugated moieties were also evident. The mechanisms involved in the generation of benzoic acid and indolinone products indicate the formation reactive intermediates in vivo that may possibly contribute to hepatotoxicity.
The carboxylic acid NSAID fenclozic acid exhibited an excellent preclinical safety profile and promising clinical efficacy, yet was withdrawn from clinical development in 1971 due to hepatotoxicity observed in clinical trials. A variety of modern in vitro approaches have been used to explore potential underlying mechanisms. Covalent binding studies were undertaken with [(14)C]-fenclozic acid to investigate the possible role of reactive metabolites. Time-dependent covalent binding to protein was observed in NADPH-supplemented liver microsomes, although no metabolites were detected in these incubations or in reactive metabolite trapping experiments. In human hepatocytes, covalent binding was observed at lower levels than in microsomes and a minor uncharacterizable metabolite was also observed. In addition, covalent binding was observed in incubations undertaken with dog and rat hepatocytes, where a taurine conjugate of the drug was detected. Although an acyl glucuronide metabolite was detected when liver microsomes from human, rat and dog were supplemented with UDPGA, there was no detectable UDPGA-dependent covalent binding. No effects were observed when fenclozic acid was assessed for P450-dependent and P450-independent cytotoxicity to THLE cell lines, time-dependent inhibition of five major human cytochrome P450 enzymes, inhibition of the biliary efflux transporters BSEP and MRP2 or mitochondrial toxicity to THLE or HepG2 cells. These data suggest that Phase 1 bioactivation plays a role in the hepatotoxicity of fenclozic acid and highlight the unique insight into mechanisms of human drug toxicity that can be provided by investigations of biotransformation and covalent binding to proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.