Combined ultrasound and photoacoustic imaging systems are being developed for biomedical and clinical applications. One common probe configuration is to use a linear transducer array with external light delivery to produce coregistered ultrasound and photoacoustic images. The diagnostic capability of these systems is dependent on the effectiveness of light delivery to the imaging target. We use Monte Carlo modeling to investigate the optimal design geometry of an integrated probe. Simulations are conducted with multiple tissue compositions and wavelengths. The effect of a skin layer with the thickness of a mouse or a human is also considered. The model was validated using a tissue-mimicking gelatin phantom and corresponding Monte Carlo simulations. The optimal illumination angle is shallower with human skin thickness, whereas intermediate angles are ideal with mouse skin thickness. The effect of skin thickness explains differences in the results of prior work. The simulations also indicate that even with identical hardware and imaging parameters, light delivery will be up to 3× smaller in humans than in mice, due to the increased scattering from thicker skin. Our findings have clear implications for the many researchers using mice to test and develop imaging methods for clinical translation. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Intravascular photoacoustic (IVPA) imaging has been developed in recent years as a viable imaging modality for the assessment of atherosclerotic plaques. Exogenous imaging contrast and therapeutic agents further enhance this imaging modality and provide significant benefits. Imaging contrast agents can significantly increase photoacoustic signal, resulting in enhanced plaque detection and characterization. The ability to use these particles to molecularly target markers of disease progression makes it possible to determine patient-specific levels of risk and plan treatments accordingly. With improved diagnosis, clinicians will be able to use therapeutic agents that are synergistic with IVPA imaging to treat atherosclerotic patients. Pre-clinical and clinical studies with relevance to IVPA imaging have shown promise in the area of diagnosis and therapeutics. In this review, we present a variety of imaging contrast agents that are either designed for or are compatible with IVPA imaging, cover uses of therapeutic agents that compliment this imaging modality, and discuss future directions of research in the field.
Objectives Intravascular photoacoustic (IVPA) imaging is being developed to image atherosclerotic plaques, a leading cause of morbidity and mortality in the United States. However, the safety of this imaging modality, which requires repeated irradiation with short laser pulses, has not yet been investigated. This study has two objectives. First, determine in vitro the limit of cumulative fluence that can be applied to cells before death at IVPA relevant wavelengths. Second, evaluate if high single pulse fluences are a potential cause of cell death during IVPA imaging. Materials and Methods Experiments were conducted using endothelial cells, macrophages, and smooth muscle cells. The cumulative fluence experiments were conducted at 1064 and 1197 nm, using a high pulse repetition frequency laser. Cells were irradiated with a wide range of cumulative fluences and evaluated for cell death. The thresholds for death were compared to the maximum expected clinical cumulative fluence. To evaluate the effect of single pulse fluences, cells were irradiated at 1064, 1210, and 1720 nm. Light was delivered at a range of pulse energies to emulate the fluences that cells would be exposed to during clinical IVPA imaging. Results At 1064 nm, all three cell types remained viable at cumulative fluences above the maximum expected clinical cumulative fluence, which is calculated based on common IVPA imaging protocols. At 1197 nm, cells were viable near or just below the maximum expected clinical cumulative fluence, with some cell type to cell type variation. All three cell types remained viable after irradiation with high single pulse fluences at all three wavelengths. Conclusion The cumulative fluence experiments indicate that safety considerations are likely to put constraints on the amount of irradiation that can be used in IVPA imaging protocols. However, this study also indicates that it will be possible to use IVPA imaging safely, since cumulative fluences could be reduced by as much as two orders of magnitude below the maximum expected clinical cumulative fluence by varying the imaging protocol, albeit at the expense of image quality. The single pulse fluence experiments indicate that cell death from single pulse fluence is not likely during IVPA imaging. Thus, future studies should focus on heat accumulation as the likely mechanism of tissue damage. Lasers Surg. Med. 51:466–474, 2019. © 2018 Wiley Periodicals, Inc.
. Significance: Intravascular photoacoustic (IVPA) imaging can identify native lipid in atherosclerotic plaques in vivo . However, the large number of laser pulses required to produce 3D images is a safety concern that has not been fully addressed. Aim: We aim to evaluate if irradiation at wavelengths and dosages relevant to IVPA imaging causes target vessel damage. Approach: We irradiate the carotid artery of swine at one of several energy dosages using radiation at 1064 or 1720 nm and use histological evaluation by a pathologist to identify dose-dependent damage. Results: Media necrosis was the only dose-dependent form of injury. Damage was present at a cumulative fluence of when using 1720 nm light. Damage was more equivocally identified at using 1064 nm. Conclusions: In prior work, IVPA imaging of native lipid in swine has been successfully conducted below the damage thresholds identified. This indicates that it will be possible to use IVPA imaging in a clinical setting without damaging vessel tissue. Future work should determine if irradiation causes an increase in blood thrombogenicity and confirm whether damaged tissue will heal over longer time points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.