DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L–H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
Divertor design and choice of plasma-facing materials (PFM) will be essential to the success of next-generation fusion reactors as they operate under more powerful scenarios. Understanding and controlling interactions between the plasma and PFM is essential to making these choices. Within these plasma–material interactions and especially in tungsten (W), the interplay between the most abundant plasma species (hydrogen isotopes and helium, He) with the wall material alters fuel retention. However, this interplay is yet to be sufficiently understood to confidently project fuel retention levels to future fusion devices. The paper presents a series of integrated simulations of fusion plasmas and their interaction with tungsten. Specifically, this study assesses the impact of He plasma pre-exposure on hydrogenic species retention during 100 s of burning plasma operations (BPO) in ITER. Multiple pre-exposure scenarios are considered, including sub-surface damage resulting from exposures in the linear device PISCES and from early ITER He-operation. The predictions from these consecutive He-BPO exposures show that fuel content and spatial distribution in the material are largely determined by the He-induced damage, as manifest in: (i) changes in surface temperature expected during BPO have little effect on fuel retention in the presence of He-induced damage; (ii) gas content stabilizes quickly in substrates pre-exposed in PISCES, at levels set by the concentration of pre-existing vacancies, while it continues to increase in substrates initially pristine or pre-exposed to ITER He plasmas; (iii) the presence of He and He–V clusters in the near-surface region locally increases hydrogenic retention, but decreases its permeation; this results in hydrogenic species that remain closer to the surface in pre-damaged substrates, while the bulk content is higher for initially pristine cases. In summary, the interaction and binding of D and T with the pre-existing He–V clusters modifies retention and permeation of hydrogen species during ITER BPO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.