Understanding what controls the travelling distance of large landslides has been the topic of considerable debate. By combining observation and experimental data with depth-averaged continuum modelling of landslides and generated seismic waves, it was empirically observed that lower effective friction had to be taken into account in the models to reproduce the dynamics and runout distance of larger volume landslides. Moreover, such simulation and observation results are compatible with a friction weakening with velocity as observed in earthquake mechanics. We investigate here as to whether similar empirical reduced friction should be put into discrete element models (DEM) to reproduce observed runout of large landslides on Earth and on Mars. First we show that, in the investigated parameter range and for a given volume, the runout distance simulated by 3D DEM is not much affected by the number (i.e. size) of grains once this number attains ~ 8000. We then calibrate the model on laboratory experiments and simulate other experiments of granular flows on inclined planes, making it possible for the first time to reproduce the observed effect of initial volume and aspect ratio on runout distances. In particular, the normalised runout distance starts to depend on the volume involved only above a critical slope angle > 16–19°, as observed experimentally. Finally, based on field data (volume, topography, deposit), we simulate a series of landslides on simplified inclined topography. The empirical friction coefficient, calibrated to reproduce the observed runout for each landslide, is shown to decrease with increasing landslide volume (or velocity), going down to values as low as 0.1–0.2. No distinguishable difference is observed between the behaviour of terrestrial and Martian landslides. Electronic supplementary material The online version of this article (10.1007/s10346-019-01140-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.