Aim: The Framingham Risk Score (FRS) and ASCVD Pooled Cohort Equation (PCE) for predicting risk for incident coronary heart disease (CHD) work poorly. To improve risk stratification for CHD, we developed a novel integrated genetic-epigenetic tool. Materials & methods: Using machine learning techniques and datasets from the Framingham Heart Study (FHS) and Intermountain Healthcare (IM), we developed and validated an integrated genetic-epigenetic model for predicting 3-year incident CHD. Results: Our approach was more sensitive than FRS and PCE and had high generalizability across cohorts. It performed with sensitivity/specificity of 79/75% in the FHS test set and 75/72% in the IM set. The sensitivity/specificity was 15/93% in FHS and 31/89% in IM for FRS, and sensitivity/specificity was 41/74% in FHS and 69/55% in IM for PCE. Conclusion: The use of our tool in a clinical setting could better identify patients at high risk for a heart attack.
Aim: New epigenetically based methods for assessing risk for coronary heart disease may be more sensitive but are generally more costly than current methods. To understand their potential impact on healthcare spending, we conducted a cost–utility analysis. Methods: We compared costs using the new Epi + Gen CHD™ test with those of existing tests using a cohort Markov simulation model. Results: We found that use of the new test was associated with both better survival and highly competitive negative incremental cost–effectiveness ratios ranging from -$42,000 to -$8000 per quality-adjusted life year for models with and without a secondary test. Conclusion: The new integrated genetic/epigenetic test will save money and lives under most real-world scenarios. Similar advantages may be seen for other epigenetic tests.
Mortality assessments are conducted for both civil and commercial purposes. Recent advances in epigenetics have resulted in DNA methylation tools to assess risk and aid in this task. However, widely available array-based algorithms are not readily translatable into clinical tools and do not provide a good foundation for clinical recommendations. Further, recent work shows evidence of heritability and possible racial bias in these indices. Using a publicly available array data set, the Framingham Heart Study (FHS), we develop and test a five-locus mortality-risk algorithm using only previously validated methylation biomarkers that have been shown to be free of racial bias, and that provide specific assessments of smoking, alcohol consumption, diabetes and heart disease. We show that a model using age, sex and methylation measurements at these five loci outperforms the 513 probe Levine index and approximates the predictive power of the 1030 probe GrimAge index. We then show each of the five loci in our algorithm can be assessed using a more powerful, reference-free digital PCR approach, further demonstrating that it is readily clinically translatable. Finally, we show the loci do not reflect ethnically specific variation. We conclude that this algorithm is a simple, yet powerful tool for assessing mortality risk. We further suggest that the output from this or similarly derived algorithms using either array or digital PCR can be used to provide powerful feedback to patients, guide recommendations for additional medical assessments, and help monitor the effect of public health prevention interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.