Convolutional neural networks excel in image recognition tasks, but this comes at the cost of high computational and memory complexity. To tackle this problem, [1] developed a tensor factorization framework to compress fully-connected layers. In this paper, we focus on compressing convolutional layers. We show that while the direct application of the tensor framework [1] to the 4-dimensional kernel of convolution does compress the layer, we can do better. We reshape the convolutional kernel into a tensor of higher order and factorize it. We combine the proposed approach with the previous work to compress both convolutional and fully-connected layers of a network and achieve 80× network compression rate with 1.1% accuracy drop on the CIFAR-10 dataset.
We present a reservoir simulation framework for coupled thermal-compositional-mechanics processes. We use finite-volume methods to discretize the mass and energy conservation equations and finite-element methods for the mechanics problem. We use the first-order backward Euler for time. We solve the resulting set of nonlinear algebraic equations using fully implicit (FI) and sequential-implicit (SI) solution schemes. The FI approach is attractive for general-purpose simulation due to its unconditional stability. However, the FI method requires the development of a complex thermo-compositionalmechanics framework for the nonlinear problems of interest, and that includes the construction of the full Jacobian matrix for the coupled multi-physics discrete system of equations. On the other hand, SI-based solution schemes allow for relatively fast development because different simulation modules can be coupled more easily. The challenge with SI schemes is that the nonlinear convergence rate depends strongly on the coupling strength across the physical mechanisms and on the details of the sequential updating strategy across the different physics modules. The flexible automatic differentiation-based framework described here allows for detailed assessment of the robustness and computational efficiency of different coupling schemes for a wide range of multi-physics subsurface problems.
In our study, we develop a model for simulating fracturing processes in a poroelastic medium. The proposed approach combines the discrete fracture model enriched with contact plane mechanics. The model captures mechanical interactions of fractures and a deformable medium, fluid, and heat transfer in fractures and in a porous medium. Both effects of poroelasticity and thermoelasticity are accounted in our model. Mass and heat conservation equations are approximated by the finite volume method, and mechanical equilibrium equations are discretized by means of the Galerkin finite element approach. Two-dimensional grid facets between 3-dimensional finite elements are considered as possible fracture surfaces. Most of these facets are inactive from the beginning and are activated throughout the simulation. A fracture propagation criterion, based on Irwin's approach, is verified on each nonlinear iteration. When the criterion is satisfied, additional contact elements are added into finite element and discrete fracture model formulations respectively. The proposed approach allows modeling of existing natural and artificially created fractures within one framework. The model is tested on single-and multiplephase fluid flow examples for both isothermal and thermal conditions and verified against existing semianalytical solutions. The applicability of the approach is demonstrated on an example of practical interests where a sector model of an oil reservoir is simulated with different injection and production regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.