We describe the IUCL+ system for the shared task of the First Workshop on Computational Approaches to Code Switching (Solorio et al., 2014), in which participants were challenged to label each word in Twitter texts as a named entity or one of two candidate languages. Our system combines character n-gram probabilities, lexical probabilities, word label transition probabilities and existing named entity recognition tools within a Markov model framework that weights these components and assigns a label. Our approach is language-independent, and we submitted results for all data sets (five test sets and three "surprise" sets, covering four language pairs), earning the highest accuracy score on the tweet level on two language pairs (Mandarin-English, Arabicdialects 1 & 2) and one of the surprise sets (Arabic-dialects).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.