In this paper we report on the novel polymeric membranes for the liquid junction‐free reference electrodes. The membranes contain the ionic liquids (ILs) based on the amino acid anions, namely valine‐, leucine‐, lysine‐ and histidine‐anions, and 1‐butyl‐3‐methylimidazolium cation. Addition of the ILs, and especially of the valine‐based one, to the polymeric plasticized membranes allows significant stabilization of the electrode potential and makes it insensitive to the solution composition. A simple criterion based on the calculated lipophilicities of the cation and anion of the IL is proposed for a priori estimation of its applicability for potential stabilization. The addition of the IL as a microcomponent is found to be advantageous over plasticizing the membrane with the IL due to better potential stability, higher dissociation degree and mobility of the species. The resistance of the novel reference membranes can be tuned by addition of the lipophilic membrane electrolytes, e. g. ETH500. The applicability of the developed reference electrodes is verified in the potentiometric calibration of the indicator K+‐ and Ca2+‐selective electrodes. Implementation of the amino acid‐based ionic liquids with low environmental toxicity can make a significant contribution to the development of nature‐friendly potentiometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.