The goal of this paper is to estimate the number of realistic drug-like molecules which could ever be synthesized. Unlike previous studies based on exhaustive enumeration of molecular graphs or on combinatorial enumeration preselected fragments, we used results of constrained graphs enumeration by Reymond to establish a correlation between the number of generated structures (M) and the number of heavy atoms (N): logM = 0.584 × N × logN + 0.356. The number of atoms limiting drug-like chemical space of molecules which follow Lipinsky's rules (N = 36) has been obtained from the analysis of the PubChem database. This results in M ≈ 10³³ which is in between the numbers estimated by Ertl (10²³) and by Bohacek (10⁶⁰).
CGRtools is an open-source Python library aimed to handle molecular and reaction information. It is the sole library developed so far which can process condensed graph of reaction (CGR) handling. CGR provides the possibility for advanced operations with reaction information and could be used for reaction descriptor calculation, structure−reactivity modeling, atom-to-atom mapping comparison and correction, reaction center extraction, reaction balancing, and some other related tasks. Unlike other popular libraries, CGRtools is fully written in Python with minor dependencies on other libraries and cross-platform. Reaction, molecule, and CGR objects in CGRtools support native Python methods and are comparable with the help of operations "equal to", "less than", and "bigger than". CGRtools supports common structural formats. CGRtools is distributed via an L-GPL license and available on https://github.com/cimmkzn/CGRtools.
In this paper, we compare the most popular Atom-to-Atom Mapping (AAM) tools: ChemAxon, [1] Indigo, [2] RDTool, [3] NameRXN (NextMove), [4] and RXNMapper [5] which implement different AAM algorithms. An open-source RDTool program was optimized, and its modified version ("new RDTool") was considered together with several consensus mapping strategies. The Condensed Graph of Reaction approach was used to calculate chemical distances and develop the "AAM fixer" algorithm for an automatized correction of erroneous mapping. The benchmarking calculations were performed on a Golden dataset containing 1851 manually mapped and curated reactions. The best performing RXNMapper program together with the AMM Fixer was applied to map the USPTO database. The Golden dataset, mapped USPTO and optimized RDTool are available in the GitHub repository https://github.com/Laboratoire-de-Chemoinformatique.
We report a new method to assess protective groups (PGs) reactivity as a function of reaction conditions (catalyst, solvent) using raw reaction data. It is based on an intuitive similarity principle for chemical reactions: similar reactions proceed under similar conditions. Technically, reaction similarity can be assessed using the Condensed Graph of Reaction (CGR) approach representing an ensemble of reactants and products as a single molecular graph, i.e., as a pseudomolecule for which molecular descriptors or fingerprints can be calculated. CGR-based in-house tools were used to process data for 142,111 catalytic hydrogenation reactions extracted from the Reaxys database. Our results reveal some contradictions with famous Greene's Reactivity Charts based on manual expert analysis. Models developed in this study show high accuracy (ca. 90%) for predicting optimal experimental conditions of protective group deprotection.
Pharmacophore modeling is a widely used strategy for finding new hit molecules. Since not all protein targets have available 3D structures, ligand-based approaches are still useful. Currently, there are just a few free ligand-based pharmacophore modeling tools, and these have a lot of restrictions, e.g., using a template molecule for alignment. We developed a new approach to 3D pharmacophore representation and matching which does not require pharmacophore alignment. This representation can be used to quickly find identical pharmacophores in a given set. Based on this representation, a 3D pharmacophore ligand-based modeling approach to search for pharmacophores which preferably match active compounds and do not match inactive ones was developed. The approach searches for 3D pharmacophore models starting from 2D structures of available active and inactive compounds. The implemented approach was successfully applied for several retrospective studies. The results were compared to a 2D similarity search, demonstrating some of the advantages of the developed 3D pharmacophore models. Also, the generated 3D pharmacophore models were able to match the 3D poses of known ligands from their protein-ligand complexes, confirming the validity of the models. The developed approach is available as an open-source software tool: and .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.