It is common practice nowadays to use multiple social networks for different social roles. Although this, these networks assume differences in content type, communications and style of speech. If we intend to understand human behaviour as a key-feature for recommender systems, banking risk assessments or sociological researches, this is better to achieve using a combination of the data from different social media. In this paper, we propose a new approach for user profiles matching across social media based on publicly available users' face photos and conduct an experimental study of its efficiency. Our approach is stable to changes in content and style for certain social media
The tasks of aspect identification and term extraction remain challenging in natural language processing. While supervised methods achieve high scores, it is hard to use them in real-world applications due to the lack of labelled datasets. Unsupervised approaches outperform these methods on several tasks, but it is still a challenge to extract both an aspect and a corresponding term, particularly in the multi-aspect setting. In this work, we present a novel unsupervised neural network with convolutional multi-attention mechanism, that allows extracting pairs (aspect, term) simultaneously, and demonstrate the effectiveness on the real-world dataset. We apply a special loss aimed to improve the quality of multi-aspect extraction. The experimental study demonstrates, what with this loss we increase the precision not only on this joint setting but also on aspect prediction only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.