This paper considers a field with high-viscosity oil in a terrigenous weakly consolidated reservoir (sandstone) with a massive gas cap and an aquifer. The major challenge in the field operation is the migration of solid sand particles into the well, accompanied by a breakthrough of water and/or gas. The goal of the investigation was to evaluate the degree of influence on the sanding process of water and gas shares in the produced fluid and to determine the effect of pressure drop. The research methodology is based on a series of filtration experiments on small-sized bulk reservoir models. Particle size distribution of bulk models was created in accordance with that of the reservoir. The experiments were made in the form of Prepack Sand Retention Tests (SRT). Gas breakthrough allows sand production on a relatively high level for a longer amount of time, even though the concentration of solids in the produced fluid is lower than that of water breakthrough. On the other hand, water breakthrough triggers higher sand production, but it rapidly decreases as time goes on. Retained permeability of the model-screen system from the drawdown pressure (pressure gradient) and phase distribution of the flow were investigated. Moreover, a methodology has been developed for conducting filtration tests on bulk reservoir models to evaluate the efficiency of different screens (wire-wrapped screens, in particular).
The complex interbedded heterogeneous reservoirs of the Severo-Komsomolskoye field are developed by horizontal wells in which, as part of the pilot project's scope, autonomous inflow control devices (AICD) are installed to prevent early coning and gas breakthroughs in long horizontal sections and reduce sand production, which is a problem aggravated by an extremely low mechanical strength of the terrigenous deposits occurring in the Pokur formation of the Cenomanian stage in this area.
The zones produced through AICDs are separated by swell packers. The issue of AICD effectiveness is discussed in the publications by Solovyev (2019), Shestov (2015), Byakov (2019) and some others.
One of the methods used for monitoring horizontal sections with AICDs is production logging (PLT). However, due to the complexity of logging objectives, the use of conventional logging techniques makes the PLT unfeasible, considering the costs of preparing and carrying out the downhole operations.
This paper provides some case studies of the Through-Barrier Diagnostics application, including passive spectral acoustics (spectral acoustic logging) and thermohydrodynamic modelling for the purpose of effective estimation of reservoir flows behind the liner with AICDs installed and well integrity diagnostics.
As a result of the performed diagnostics, the well completion strategy was updated and optimised according to the log interpretation results, and one well intervention involving a cement squeeze with a straddle-packer assembly was carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.