The Tethysides are a superorogenic complex flanking the Eurasian continent to the south and consisting of the Cimmerides and Alpides , products of Palaeo- and Neo-Tethys respectively. We here review their evolution, mainly on the basis of new maps showing the distribution of sutures, magmatic rocks, certain palaeobiogeographically and palaeoclimatologically significant taxa and facies, and fragments of Pan-African (900–450 Ma) orogenic system forming the basement of many Tethyside blocks. These are supplemented by palaeomagnetic data reported in the literature. A fundamental tenet of this paper is that major sutures which contain ophiolite fragments, represent tectonic sections between continental blocks where oceanic crust has been subducted. Palaeo-Tethys came into existence largely in late Carboniferous time. Coevally, it began to be consumed by both internal and peripheral subduction zones, which continued into the Permian; some of these had been inherited from pre-Tethyan times. In the later Permian, rifting subparallel with the northern margin of Gondwana Land began between the Zagros and Malaysia, separating a Cimmerian continent from N. Gondwana Land, and thus heralding the opening of Neo-Tethys and other smaller oceans that were back-arc basins of Palaeo-Tethys. This rifting possibly also extended farther west into Crete and mainland Greece. However, the North China block, Yangtze block, Huanan block, the eastern moity of the Qangtang block (North Tibet), and Annamia, all originally pieces of the end-Proterozoic-early Palaeozoic Gondwana Land, had already separated from it in pre-late Carboniferous times, possibly during the Devonian. All of these blocks, and the Cimmerian continent, were characterized by Cathaysian floral elements in late Palaeozoic time. Palaeomagnetic and palaeontological data showing the original Gondwana Land affinity of these continental blocks are supplemented by correlating late Proterozoic-early Palaeozoic Pan-African sutures, orogenic belts, and sedimentary basin fragments across Tethyside sutures. Late Permian foraminiferal provinces are related to this palaeogeographical interpretation. By Triassic times, most Cimmeride subduction zones were already in existence. The Cimmerian Continent accelerated its separation from Gondwana Land and—locally in the late Permian—began disintegrating internally along the Waser/Rushan-Pshart/Banggong Co-Nu Jiang/Mandalay ocean. By late Triassic time all of the Chinese blocks—except Lhasa-and Annamia had collided with each other and with Laurasia. The resulting enormous orogenic collage had a ‘soft cushion’ between itself and Laurasia, in the form of the enormous accretionary complex of the Songpan-Ganzi. This connection enabled Laurasian land vertebrates to reach south-east Asia by late Triassic time. In late Triassic to middle Jurassic times, most major Cimmeride collisions were completed. Widespread aridity in Central Asia occurred in late Jurassic time, probably in the rain shadow of the newly formed Cimmeride mountain wall. Neo-Tethyan subduction systems formed along the S. margin of the Cimmerides or within Neo-Tethyan oceanic lithosphere during the Jurassic. Most, if not all, were north- or east-dipping. They continued the northerly migration of the Tethyside blocks. Evolution of the Tethysides influenced the distribution of marine and terrestrial organisms, and affected sea-level changes and patterns of atmospheric circulation during much of the Mesozoic and Cainozoic. It is likely to have reflected the surface expression of a persistent trend in the large-scale convective circulation in the mantle, that continuously transported material northward into the Tethyan domain.
Valid palaeotectonic and palaeogeographical reconstructions of the easternmost Mediterranean and adjacent region involve a long-lived Tethys (Rheic, Palaeotethyan and Neotethyan oceans), northward subduction beneath Eurasia and rifting of continental fragments from Gondwana. Rifted microcontinents bordering Gondwana were separated (from south to north) by the Southern Neotethyan ocean, the Berit ocean (new name), the Inner Tauride ocean and the İzmir–Arkara–Erzincan ocean. Mid-Permian to Mid-Triassic pulsed rifting culminated in Late Triassic–Early Jurassic spreading of the Southern Neotethyan oceans (the main focus here). After Early–Mid-Jurassic passive subsidence, the Late Jurassic–Early Cretaceous was characterized by localized alkaline, within-plate magmatism related to plume activity or renewed rifting. Late Cretaceous ophiolites formed above subduction zones in several oceanic basins. Ophiolites were emplaced southwards onto the Tauride and Arabian platforms during the latest Cretaceous. The Southern Neotethys sutured with the Arabian margin during the Early–Middle Miocene, while oceanic crust remained in the Eastern Mediterranean further west. The leading edge of the North African continental margin, the Eratosthenes Seamount, collided with a subduction trench south of Cyprus during the Late Pliocene–Pleistocene, triggering rapid uplift. Coeval Plio-Quaternary uplift of the Taurides may relate to break-off or delamination of a remnant oceanic slab.
A summary and discussion is given of alternative models of the tectonic evolution of the Tethyan orogenic belt in the Eastern Mediterranean region, based on recent information. Model 1 (Robertson & Dixon 1984). A single Tethyan ocean continuously existed in the Eastern Mediterranean region, at least from Late Palaeozoic onwards. The dominant influences were episodic northward subduction of Tethyan oceanic crust beneath Eurasia, and the northward drift of continental fragments, from Gondwana towards Eurasia. During the Mesozoic, the south Tethyan area was interspersed with Gondwana-derived microcontinents and small ocean basins. Ophiolites formed mainly by spreading above subduction zones in both northerly (internal) and southerly (external) oceanic basins during times of regional plate convergence, and were mainly emplaced as a result of trench-passive margin collisions. In a related model, Stampfli et al. (1991) argued for spreading along the North African margin in the Late Permian. Model 2A (Dercourt et al. 1986). Only one evolving Tethys existed. Triassic-Jurassic oceanic crust (Neotethys) formed in a single Tethyan ocean basin located north of Gondwana-related units. Spreading later formed a small ocean basin in the present Eastern Mediterranean Sea area during the Cretaceous. Jurassic and Cretaceous ophiolites formed at spreading ridges and record times of regional plate divergence. In an update version, Model 2B (Dercourt et al. 1993), spreading extended along the northern margin of Gondwana, with an arm extending through the south Aegean, splitting off a large microcontinent. Further spreading in the Cretaceous then opened the Eastern Mediterranean basin and fragmented pre-existing carbonate platforms. The Mesozoic ophiolites were seen as being mainly far-travelled from northerly (i.e. internal) orogenic areas. Model 3 (Şengör et al. 1984). Subduction in the Late Palaeozoic was dominantly southwards, beneath the northern margin of Gondwana in the Eastern Mediterranean. This subduction led to opening of Triassic backarc basins; and a rifted Gondwana fragment (Cimmeria) drifted across a pre-existing Tethys (Palaeo-Tethys) to collide with a passive Eurasian margin. In their model, a backarc basin (Karakaya Basin) rifted and then closed prior to collision of a Cimmerian microcontinent in the Mid Jurassic, and this was followed by renewed rifting of a small ocean basin in the Early Jurassic. Mesozoic ophiolites mainly formed above subduction zones; they were variously seen as far-travelled (in the ‘Greek area’), or more locally rooted (in the ‘Turkish area’). Recent evidence shows that difficulties exist in detail with all three models. However, four key elements are met in Model 1: dominantly northward subduction in the north; multiple ocean basins from Triassic onwards in the south; supra-subduction spreading of the major ophiolites; and emplacement from both northerly and southerly Mesozoic oceanic basins. Palaeomagnetism has played an important role, in setting the large-scale Africa-Eurasia relative motion framework and in providing tests for the tectonic affinities of smaller units, but such smaller-scale studies have often been compromised by the geological complexity and by the remagnetisation of tectonically thickened units.
Geological information from the Eastern Taurus Mountains, part of the Tethyan (South Neotethyan) suture zone exposed in the Elaziğ region, is used here to test existing tectonic hypotheses and to develop a new tectonic model. Five main tectonic stages are identified: (1) Mid-Late Triassic rifting-spreading of Southern Neotethys; (2) Late Cretaceous northward subduction-accretion of ophiolites and arc-related units; (3) Mid-Eocene subduction-related extension; (4) Early-Mid-Miocene collision and southward thrusting over the Arabian Foreland; (6) Plio-Quaternary, post-collisional left-lateral tectonic escape. During the Late Cretaceous (c. 90 Ma) northward intra-oceanic subduction generated regionally extensive oceanic lithosphere as the İspendere, Kömürhan, Guleman and Killan ophiolites of supra-subduction zone type. A northward-dipping subduction zone was activated along the northern margin of the ocean basin (Keban Platform), followed by accretion of Upper Cretaceous ophiolites in latest Cretaceous time. As subduction continued the accreted ophiolites and overriding northern margin (Keban Platform) were intruded by calc-alkaline plutons, still during latest Cretaceous time. The northern margin was covered by shallow-marine mixed clastic-carbonate sediments in latest Cretaceous-Early Palaeogene time. Northward subduction during the Mid-Eocene was accompanied by extension of the northern continental margin, generating large fault-bounded, extensional basins that were infilled with shallow- to deep-water sediments and subduction-influenced volcanic rocks (Maden Group). Thick debris flows (‘olistostromes’) accumulated along the oceanward edge of the active margin. The partly assembled allochthon finally collided with the Arabian continental margin to the south during Early-Mid-Miocene time in response to oblique convergence; the entire thrust stack was then emplaced southwards over the downflexed Arabian Foreland. Left-lateral strike-slip (tectonic escape) along the East Anatolian Fault Zone ensued.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.