Reactive oxygen species (ROS) and pro-inflammatory cytokines are crucial in ventricular remodelling, such as inflammation-associated myocarditis. We previously reported that tumour necrosis factor-α (TNF-α)-induced ROS in human aortic smooth muscle cells is mediated by NADPH oxidase subunit Nox4. In this study, we investigated whether TNF-α-induced ventricular remodelling was mediated by Nox2 and/or Nox4. An intravenous injection of murine TNF-α was administered to a group of mice and saline injection was administered to controls. Echocardiography was performed on days 1, 7 and 28 post-injection. Ventricular tissue was used to determine gene and protein expression of Nox2, Nox4, ANP, interleukin (IL)-1β, IL-2, IL-6, TNF-α and to measure ROS. Nox2 and Nox4 siRNA were used to determine whether or not Nox2 and Nox4 mediated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in adult human cardiomyocytes. Echocardiography showed a significant increase in left ventricular end-diastolic and left ventricular end-systolic diameters, and a significant decrease in the ejection fraction and fractional shortening in mice 7 and 28 days after TNF-α injection. These two groups of mice showed a significant increase in ventricular ROS, ANP, IL-1β, IL-2, IL-6 and TNF-α proteins. Nox2 and Nox4 mRNA and protein levels were also sequentially increased. ROS was significantly decreased by inhibitors of NADPH oxidase, but not by inhibitors of other ROS production systems. Nox2 and Nox4 siRNA significantly attenuated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in cardiomyocytes. Our study highlights a novel TNF-α-induced chronic ventricular remodelling mechanism mediated by sequential regulation of Nox2 and Nox4 subunits.
Background/Aims: Neointimal thickening results from inflammation in association with vascular smooth muscle cell (VSMC) proliferation. We studied the role of perivascular adipose tissue (PVAT) on VSMC proliferation and intima-media thickening (IMT) in a rodent model of chronic inflammation. Methods: The abdominal aorta and surrounding PVAT of tumour necrosis factor (TNF)-α-injected mice were examined 28 days after administration. Plasma and PVAT cytokines were measured with Milliplex™ assays. Inflammatory cells were examined with immunofluorescence. Expression of transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-2, MMP-9 and MMP-12 was examined with immunohistochemistry, immunoblotting and zymography. IMT was determined. Cell proliferation and TGF-β1 mRNA levels were examined after treating VSMC with PVAT homogenates ± MMP-2 inhibitors (batimastat, ARP 100 or TIMP-2) and SB-431542, a selective inhibitor of the TGF-β-type 1 receptor. Results: Significant increases in CD3, CD68, neutrophils, vascular cell adhesion molecule-1 and MMP-2 in PVAT, and TGF-β1 and IMT of the aorta of TNF-α-injected mice were observed. PVAT of TNF-α-injected mice significantly up-regulated TGF-β1 and increased cell proliferation in a dose-dependent manner and was attenuated by SB-431542, batimastat, ARP 100 and TIMP-2. Conclusions: Our study shows that chronic PVAT inflammation leads to MMP-mediated increase in TGF-β1 and hence VSMC proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.