Membrane permeability is a key property to consider during the drug design process, and particularly vital when dealing with small molecules that have intracellular targets as their efficacy highly depends on their ability to cross the membrane. In this work, we describe the use of umbrella sampling molecular dynamics (MD) computational modeling to comprehensively assess the passive permeability profile of a range of compounds through a lipid bilayer. The model was initially calibrated through in vitro validation studies employing a parallel artificial membrane permeability assay (PAMPA). The model was subsequently evaluated for its quantitative prediction of permeability profiles for a series of custom synthesized and closely related compounds. The results exhibited substantially improved agreement with the PAMPA data, relative to alternative existing methods. Our work introduces a computational model that underwent progressive molding and fine-tuning as a result of its synergistic collaboration with numerous in vitro PAMPA permeability assays. The presented computational model introduces itself as a useful, predictive tool for permeability prediction.
While CRISPR/Cas9 technology has proven to be a valuable system to generate gene-targeted modified animals in several species, this tool has been scarcely reported in farm animals. Myostatin is encoded by MSTN gene involved in the inhibition of muscle differentiation and growth. We determined the efficiency of the CRISPR/Cas9 system to edit MSTN in sheep and generate knock-out (KO) animals with the aim to promote muscle development and body growth. We generated CRISPR/Cas9 mRNAs specific for ovine MSTN and microinjected them into the cytoplasm of ovine zygotes. When embryo development of CRISPR/Cas9 microinjected zygotes (n = 216) was compared with buffer injected embryos (n = 183) and non microinjected embryos (n = 173), cleavage rate was lower for both microinjected groups (P<0.05) and neither was affected by CRISPR/Cas9 content in the injected medium. Embryo development to blastocyst was not affected by microinjection and was similar among the experimental groups. From 20 embryos analyzed by Sanger sequencing, ten were mutant (heterozygous or mosaic; 50% efficiency). To obtain live MSTN KO lambs, 53 blastocysts produced after zygote CRISPR/Cas9 microinjection were transferred to 29 recipient females resulting in 65.5% (19/29) of pregnant ewes and 41.5% (22/53) of newborns. From 22 born lambs analyzed by T7EI and Sanger sequencing, ten showed indel mutations at MSTN gene. Eight showed mutations in both alleles and five of them were homozygous for indels generating out-of frame mutations that resulted in premature stop codons. Western blot analysis of homozygous KO founders confirmed the absence of myostatin, showing heavier body weight than wild type counterparts. In conclusion, our results demonstrate that CRISPR/Cas9 system was a very efficient tool to generate gene KO sheep. This technology is quick and easy to perform and less expensive than previous techniques, and can be applied to obtain genetically modified animal models of interest for biomedicine and livestock.
Enterococcus faecalis has been shown to be highly resistant once established in the root canal system and may play an important role in endodontic failures. The purpose of this study was to evaluate the antimicrobial activity of four root canal sealers on E. faecalis. Seventeen blood-agar plates were inoculated with E. faecalis using the Lawn technique. Five discs were placed on each plate, four with sealers--Sealapex, Roth 811, Kerr EWT, and AH-Plus--and an ampicillin disc as the control. The plates were incubated at 37 degrees C. The zones of inhibition were measured at 24 and 48 h. Analysis using a one-way ANOVA and Tukey test showed a statistically significance difference (p < 0.05) between all four groups of sealers. Roth 811 showed the largest zone of inhibition (1.1 mm), followed by Sealapex (0.8 mm) and Kerr EWT (0.5 mm), whereas AH-Plus had no antimicrobial activity. There was no difference in the zones of inhibition between the 24- and 48-h time periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.