Colon cancer is one of the highest cancer diagnosis mortality rates worldwide. However, relying on the expertise of pathologists is a demanding and time-consuming process for histopathological analysis. The automated diagnosis of colon cancer from biopsy examination played an important role for patients and prognosis. As conventional handcrafted feature extraction requires specialized experience to select realistic features, deep learning processes have been chosen as abstract high-level features may be extracted automatically. This paper presents the colon cancer detection system using transfer learning architectures to automatically extract high-level features from colon biopsy images for automated diagnosis of patients and prognosis. In this study, the image features are extracted from a pre-trained convolutional neural network (CNN) and used to train the Bayesian optimized Support Vector Machine classifier. Moreover, Alexnet, VGG-16, and Inception-V3 pre-trained neural networks were used to analyze the best network for colon cancer detection. Furthermore, the proposed framework is evaluated using four datasets: two are collected from Indian hospitals (with different magnifications 4X, 10X, 20X, and 40X) and the other two are public colon image datasets. Compared with the existing classifiers and methods using public datasets, the test results evaluated the Inception-V3 network with the accuracy range from 96.5% - 99% as best suited for the proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.