The renewable monomer ε-decalactone is an excellent partner to L-lactide, where their copolymers overcome inherent drawbacks of polylactide, such as low thermal stability and brittleness. ε-Decalactone is a seven-membered lactone that was successfully polymerized with Sn(Oct)(2) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene into both an amorphous homopolymer and copolymers with high molecular weight, low dispersity, and predicted macromolecular architecture. The thermoresilient nature of ε-decalactone is reflected in a high polymerization ceiling temperature and increased thermal stability for the prepared copolymers. The high ceiling temperature enables easy modulation of the polymerization rate via temperature while maintaining architectural control. The apparent rate constant was increased 15-fold when the temperature was increased from 110 to 150 °C. Copolymers of L-lactide and ε-decalactone, either with the latter as a central block in triblock polymers or with randomly positioned monomers, exhibited exceptionally tough material characteristics. The triblock copolymer had an elongation-at-break 250 times greater than that of pure poly(L-lactide). The toughness of the copolymers is attributed to the flexible nature of the polymer derived from the monomer ε-decalactone and to the segment immiscibility. These properties result in phase separation to soft and hard domains, which provides the basis for the elastomeric behavior.
The design of the 3D architecture surfaces with both space- and time-dependent functionality (cell attraction, pH-trigged self-cleaning, antiseptic/disinfection) is in the focus. The innovative story includes: sonochemical surface activation, formation of feedback surface component (pH-responsible micelles), proof of responsive activity (time resolved cell adhesion and bacteria deactivation) and space adhesion selectivity (surface patterning).
We report on the fabrication of a novel material with the ability to remain in solution even under the very demanding conditions required for structural and dynamic characterization of biomacromolecule assays. This stability is provided by the increase in surface area of a low density material (aluminium) natively coated with a very hydrophilic surface composed of aluminium oxide (Al(2)O(3)) and metallic silver nanoparticles. Additionally, due to the dense collection of active hot spots on their surface, this material offers higher levels of SERS intensity as compared with the same free and aggregated silver nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.