Back-translating the clinical manifestations of human disease burden into animal models is increasingly recognized as an important facet of preclinical drug discovery. We hypothesized that inbred rat strains possessing stress hyper-reactive-, depressive- or anxiety-like phenotypes may possess more translational value than common outbred strains for modeling neuropathic pain. Rats (inbred: LEW, WKY, F344/ICO and F344/DU, outbred: Crl:SD) were exposed to Spared Nerve Injury (SNI) and evaluated routinely for 6 months on behaviours related to pain (von Frey stimulation and CatWalk-gait analysis), anxiety (elevated plus maze, EPM) and depression (sucrose preference test, SPT). Markers of stress reactivity together with spinal/brain opioid receptor expression were also measured. All strains variously developed mechanical allodynia after SNI with the exception of stress-hyporesponsive LEW rats, despite all strains displaying similar functional gait-deficits after injury. However, affective changes reflective of anxiety- and depressive-like behaviour were only observed for F344/DU in the EPM, and for Crl:SD in SPT. Although differences in stress reactivity and opioid receptor expression occurred, overall they were relatively unaffected by SNI. Thus, anxio-depressive behaviours did not develop in all strains after nerve injury, and correlated only modestly with degree of pain sensitivity or with genetic predisposition to stress and/or affective disturbances.
Background Translating efficacy of analgesic drugs from animal models to humans remains challenging. Reasons are multifaceted, but lack of sufficiently rigorous preclinical study design criteria and phenotypically relevant models may be partly responsible. To begin to address this fundamental issue, we assessed the analgesic efficacy of morphine in three inbred rat strains (selected based on stress reactivity and affective/pain phenotypes), and outbred Sprague Dawley ( SD ) rats supplied from two vendors. Methods Sensitivity to morphine (0.3–6.0 mg/kg, s.c.) was evaluated in the hot plate test of acute thermal nociception, the Complete Freund's Adjuvant ( CFA ) model of inflammatory‐induced mechanical hyperalgesia, and in a locomotor motility assay in male rats from the following strains; Lewis ( LEW ), Fischer (F344), Wistar Kyoto ( WKY ), and SD 's from Envigo and Charles River. Results F344 and SD rats were similarly sensitive to morphine in hot plate and CFA ‐induced inflammatory hyperalgesia (Minimum Effective Dose ( MED ) = 3.0 mg/kg). WKY rats developed a less robust mechanical hypersensitivity after CFA injection, and were less sensitive to morphine in both pain tests ( MED = 6.0 mg/kg). LEW rats were completely insensitive to morphine in the hot plate test, in contrast to the reversal of CFA ‐induced hyperalgesia ( MED = 3.0 mg/kg). All strains exhibited a dose‐dependent reduction in locomotor activity at 3.0–6.0 mg/kg. Conclusion Sensory phenotyping in response to acute thermal and inflammatory‐induced pain, and sensitivity to morphine in various inbred and outbred rat strains indicates that different pathophysiological mechanisms are engaged after injury. This could have profound implications for translating preclinical drug discovery efforts into pain patients. Significance The choice of rat strain used in preclinical pain research can profoundly affect the outcome of experiments in relation to (a) nociceptive threshold responses, and (b) efficacy to analgesic treatment, in assays of acute and tonic inflammatory nociceptive pain.
IntroductionThe induction of neuropathic pain-like behaviors in rodents often requires surgical intervention. This engages acute nociceptive signaling events that contribute to pain and stress post-operatively that from a welfare perspective demands peri-operative analgesic treatment. However, a large number of researchers avoid providing such care based largely on anecdotal opinions that it might interfere with model pathophysiology in the longer term.ObjectivesTo investigate effects of various peri-operative analgesic regimens encapsulating different mechanisms and duration of action, on the development of post-operative stress/welfare and pain-like behaviors in the Spared Nerve Injury (SNI)-model of neuropathic pain.MethodsStarting on the day of surgery, male Sprague-Dawley rats were administered either vehicle (s.c.), carprofen (5.0mg/kg, s.c.), buprenorphine (0.1mg/kg s.c. or 1.0mg/kg p.o. in Nutella®), lidocaine/bupivacaine mixture (local irrigation) or a combination of all analgesics, with coverage from a single administration, and up to 72 hours. Post-operative stress and recovery were assessed using welfare parameters, bodyweight, food-consumption, and fecal corticosterone, and hindpaw mechanical allodynia was tested for assessing development of neuropathic pain for 28 days.ResultsNone of the analgesic regimes compromised the development of mechanical allodynia. Unexpectedly, the combined treatment with 0.1mg/kg s.c. buprenorphine and carprofen for 72 hours and local irrigation with lidocaine/bupivacaine, caused severe adverse effects with peritonitis. This was not observed when the combination included a lower dose of buprenorphine (0.05mg/kg, s.c.), or when buprenorphine was administered alone (0.1mg/kg s.c. or 1.0mg/kg p.o.) for 72 hours. An elevated rate of wound dehiscence was observed especially in the combined treatment groups, underlining the need for balanced analgesia. Repeated buprenorphine injections had positive effects on body weight the first day after surgery, but depressive effects on food intake and body weight later during the first week.ConclusionPost-operative analgesia does not appear to affect established neuropathic hypersensitivity outcome in the SNI model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.