Natural killer (NK) cells are important effector cells in the immune response to cancer. Clinical trials on adoptively transferred NK cells in patients with solid tumors, however, have thus far been unsuccessful. As NK cells need to pass stringent safety evaluation tests before clinical use, the cells are cryopreserved to bridge the necessary evaluation time. Standard degranulation and chromium release cytotoxicity assays confirm the ability of cryopreserved NK cells to kill target cells. Here, we report that tumor cells embedded in a 3-dimensional collagen gel, however, are killed by cryopreserved NK cells at a 5.6-fold lower rate compared to fresh NK cells. This difference is mainly caused by a 6-fold decrease in the fraction of motile NK cells after cryopreservation. These findings may explain the persistent failure of NK cell therapy in patients with solid tumors and highlight the crucial role of a 3-D environment for testing NK cell function.
Immune cells such as natural killer (NK) cells migrate with high speeds of several μm/min through dense tissue, but the traction forces are unknown. We present a method to measure dynamic traction forces of fast migrating cells in non-linear biopolymer matrices. We find that NK cells display bursts of large traction forces that increase with matrix stiffness and facilitate migration through tight constrictions.
Running title: NK cell motility and cytotoxicity in a 3-D environmentSynopsis: Cryopreservation of natural killer (NK) cells dramatically impairs their motility and cytotoxicity in tissue. This finding may explain the persistent failure of clinical trials in which NK cell therapy is used for treating solid tumors.
AbstractNatural killer (NK) cells are important effector cells in the immune response to cancer. Clinical trials on adoptively transferred NK cells in patients with solid tumors, however, have thus far been unsuccessful. As NK cells need to pass stringent safety evaluation for clinical use, the cells are cryopreserved to bridge the necessary evaluation time. While a degranulation assay confirms the ability of cryopreserved NK cells to kill target cells, we find a significant decrease of cytotoxicity after cryopreservation in a chromium release assay. We complement these standard assays with measurements of NK cell motility and cytotoxicity in 3-dimensional (3-D) collagen gels that serve as a substitute for connective tissue. We find a 5.6 fold decrease of cytotoxicity after cryopreservation and establish that this is mainly caused by a 6-fold decrease in the fraction of motile NK cells. These findings may explain the persistent failure of NK cell therapy in patients with solid tumors and highlight the crucial role of a 3-D environment for testing NK cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.