Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.
Summary0 Carex arenaria forms large clonal fragments "up to 01 m long# in environments in which soil!bound resources limit growth[ 1 We hypothesized that extensive integration of C[ arenaria would facilitate the exploitation of scarce and patchily distributed soil resources and that the continued functioning of old roots would enable exploitation of resources that are temporally variable[ 2 We used labelling with 03 C and acid fuchsin to study the degree and extent of physiological integration and root function of intact clonal systems of C[ arenaria in a sand dune area in south Sweden[ 3 The uptake and translocation of dye suggests that old roots remain capable of taking up water and nutrients\ in contrast with negative reports from previous studies[ Water was translocated both acropetally and basipetally[ 4 Thirty per cent of the assimilated carbon was found to be translocated towards the growing apex[ Smaller\ but signi_cant\ amounts of carbon were translocated basi! petally throughout the fragments "06Ð63 ramet generations#[ 5 The results are discussed in terms of the sourceÐsink relations of large clonal systems in the _eld[ The translocation patterns are considered in relation to soil moisture and nutrient availability[ Keywords] acid fuchsin dye\ carbon\ clonal plant\ resource heterogeneity\ sand dunes Journal of Ecology "0888# 76\ 147Ð153
Coexistence between genetically modified (GM) and non-GM plants is a field of rapid development and considerable controversy. In crops, it is increasingly important to understand and predict the GM volunteer emergence in subsequent non-GM crops. Theoretical models suggest recruitment from the seedbank over extended periods, but empirical evidence matching these predictions has been scarce. Here, we provide evidence of long-term GM seed persistence in conventional agriculture. Ten years after a trial of GM herbicide-tolerant oilseed rape, emergent seedlings were collected and tested for herbicide tolerance. Seedlings that survived the glufosinate herbicide (15 out of 38 volunteers) tested positive for at least one GM insert. The resulting density was equivalent to 0.01 plants m L2 , despite complying with volunteer reduction recommendations. These results are important in relation to debating and regulating coexistence of GM and non-GM crops, particularly for planting non-GM crops after GM crops in the same field.
Whilst life cycle assessment (LCA) boundaries are expanded to account for negative indirect consequences of bioenergy such as indirect land use change (ILUC), ecosystem services such as water purification sometimes delivered by perennial bioenergy crops are typically neglected in LCA studies. Consequential LCA was applied to evaluate the significance of nutrient interception and retention on the environmental balance of unfertilised energy willow planted on 50-m riparian buffer strips and drainage filtration zones in the Skåne region of Sweden. Excluding possible ILUC effects and considering oil heat substitution, strategically planted filter willow can achieve net global warming potential (GWP) and eutrophication potential (EP) savings of up to 11.9 Mg CO 2 e and 47 kg PO 4 e ha -1 year -1 , respectively, compared with a GWP saving of 14.8 Mg CO 2 e ha -1 year -1 and an EP increase of 7 kg PO 4 e ha -1 year -1 for fertilised willow. Planting willow on appropriate buffer and filter zones throughout Skåne could avoid 626 Mg year -1 PO 4 e nutrient loading to waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.