SignificanceThere is a strong need for the development of new antiviral therapies, and this study sheds light on a host–virus interaction that is significant for a number of medically important human viruses. The study also suggests that the RNA-binding zinc finger CCCH-type containing 11A (ZC3H11A) protein takes part in a mechanism that facilitates nuclear export of mRNA, particularly under cellular stress, a mechanism that has been “hijacked” by several nuclear-replicating viruses to promote their replication. ZC3H11A is therefore a potential target for development of an antiviral therapy.
Annual outbreaks of seasonal influenza are controlled or prevented through vaccination in many countries. The seasonal vaccines used are either inactivated, currently administered parenterally, or live-attenuated given intranasally. In this study three mucosal adjuvants were examined for the influence on the humoral (mucosal and systemic) and cellular influenza A-specific immune responses induced by a nasally administered vaccine. We investigated in detail how the anionic Endocine™ and the cationic adjuvants N3OA and N3OASq mixed with a split inactivated influenza vaccine induced influenza A-specific immune responses as compared to the vaccine alone after intranasal immunization. The study showed that nasal administration of a split virus vaccine together with Endocine™ or N3OA induced significantly higher humoral and cell-mediated immune responses than the non-adjuvanted vaccine. N3OASq only significantly increased the cell-mediated immune response. Furthermore, nasal administration of the influenza vaccine in combination with any of the adjuvants; Endocine™, N3OA or N3OASq, significantly enhanced the mucosal immunity against influenza HA protein. Thus the addition of these mucosal adjuvants leads to enhanced immunity in the most relevant tissues, the upper respiratory tract and the systemic circulation. Nasal influenza vaccination with an inactivated split vaccine can therefore provide an important mucosal immune response, which is often low or absent after traditional parenteral vaccination.
Background The COVID-19 pandemic has highlighted the need for rapid, cost effective and easy-to-use diagnostic tools for SARS-CoV-2 infections that can be used in point of care settings to limit disease transmission. Objective We evaluated two rapid antigen immunochromatographic tests, Abbott Panbio™ COVID-19 Ag Rapid Test (Panbio) and Zhejiang Orient Gene/Healgen Biotech Coronavirus Ag rapid test cassette (Orient gene) for detection of infectious SARS-CoV-2. Results The tests were evaluated on nasopharyngeal samples taken from individuals having respiratory and/or COVID-19 related symptoms, which had been analyzed for SARS-CoV-2 RNA using real-time PCR. In total 156 PCR-positive, and 130 (Panbio) and 176 (Orient Gene) PCR-negative samples were analyzed. Overall sensitivity and specificity were 71.8% and 100% for Panbio and 79.5% and 74.4% for the Orient Gene test respectively. The false positives by the Orient Gene test were verified as SARS-CoV-2 negative by in-house real-time PCR assay and were negative for the four seasonal coronaviruses. Subgroup analysis revealed that the antigen tests had high sensitivity for samples with Ct-values <25 (>88%) and for samples containing infectious viruses as determined by cultivation on Vero cells, 94.1% and 97.1% for the Panbio and Orient gene tests, respectively. Furthermore, both tests had a sensitivity of <50 picogram for nucleocapsid protein. No sample with a Ct-value >27 was shown to contain infectious virus. Conclusion The results indicate that the rapid antigen tests, especially the Panbio tests may be a valuable tool to detect contagious persons during the ongoing pandemic.
BackgroundInfections of the central nervous system (CNS) with herpes- or enterovirus can be self-limiting and benign, but occasionally result in severe and fatal disease. The polymerase chain reaction (PCR) has revolutionized the diagnostics of viral pathogens, and by multiple displacement amplification (MDA) prior to real-time PCR the sensitivity might be further enhanced. The aim of this study was to investigate if herpes- or enterovirus can be detected in cerebrospinal fluid (CSF) from patients without symptoms.MethodsCerebrospinal fluid (CSF) samples from 373 patients lacking typical symptoms of viral CNS infection were analysed by real-time PCR targeting herpesviruses or enteroviruses with or without prior MDA.ResultsIn total, virus was detected in 17 patients (4%). Epstein-Barr virus (EBV) was most commonly detected, in general from patients with other conditions (e.g. infections, cerebral hemorrhage). MDA satisfactorily amplified viral DNA in the absence of human nucleic acids, but showed poor amplification capacity for viral DNA in CSF samples, and did not increase the sensitivity for herpes virus-detection with our methodology.ConclusionsViral pathogens are rarely detected in CSF from patients without signs of CNS infection, supporting the view that real-time PCR is a highly specific method to detect symptomatic CNS-infection caused by these viruses. However, EBV may be subclinically reactivated due to other pathological conditions in the CNS.
We constructed novel HIV-1 fusion inhibitors that may overcome the current limitations of enfuvirtide, the first such therapeutic in this class. The three prototypes generated by the Dock-and-Lock (DNL) technology to comprise four copies of enfuvirtide tethered site-specifically to the Fc end of different humanized monoclonal antibodies potently neutralize primary isolates (both R5-tropic and X4-tropic), as well as T-cell-adapted strains of HIV-1 in vitro. All three prototypes show EC 50 values in the subnanomolar range, which are 10- to 100-fold lower than enfuvirtide and attainable whether or not the constitutive antibody targets HIV-1. The potential of such conjugates to purge latently infected cells was also demonstrated in a cell-to-cell viral inhibition assay by measuring their efficacy to inhibit the spread of HIV-1 LAI from infected human peripheral blood mononuclear cells to Jurkat T cells over a period of 30 days following viral activation with 100 nM SAHA (suberoylanilide hydroxamic acid). The IgG-like half-life was not significantly different from that of the parental antibody, as shown by the mean serum concentration of one prototype in mice at 72 h. These encouraging results provide a rationale to develop further novel anti-HIV agents by coupling additional antibodies of interest with alternative HIV-inhibitors via recombinantly-produced, self-assembling, modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.