Background
The use of predictive gene signatures to assist clinical decision is becoming more and more important. Deep learning has a huge potential in the prediction of phenotype from gene expression profiles. However, neural networks are viewed as black boxes, where accurate predictions are provided without any explanation. The requirements for these models to become interpretable are increasing, especially in the medical field.
Results
We focus on explaining the predictions of a deep neural network model built from gene expression data. The most important neurons and genes influencing the predictions are identified and linked to biological knowledge. Our experiments on cancer prediction show that: (1) deep learning approach outperforms classical machine learning methods on large training sets; (2) our approach produces interpretations more coherent with biology than the state-of-the-art based approaches; (3) we can provide a comprehensive explanation of the predictions for biologists and physicians.
Conclusion
We propose an original approach for biological interpretation of deep learning models for phenotype prediction from gene expression data. Since the model can find relationships between the phenotype and gene expression, we may assume that there is a link between the identified genes and the phenotype. The interpretation can, therefore, lead to new biological hypotheses to be investigated by biologists.
The NRAS protooncogene codes for a GTP binding/GTPase p21 protein which resides on the inner surface of the plasma mebrane. Using a human cDNA probe for NRAS, we have assigned the gene to Syrian hamster chromosome 12 with the most likely localization being 12qa5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.