The United Nations and the U.S. Environmental Protection Agency have identified a variety of chlorinated aromatics that constitute a significant health and environmental risk as "priority organic pollutants," the socalled "dirty dozen." Microbes have evolved the ability to utilize chlorinated aromatics as terminal electron acceptors in an energy-generating process called dehalorespiration. In this process, a reductive dehalogenase (CprA), couples the oxidation of an electron donor to the reductive elimination of chloride. We have characterized the B 12 and iron-sulfur cluster-containing 3-chloro-4-hydroxybenzoate reductive dehalogenase from Desulfitobacterium chlororespirans. By defining the substrate and inhibitor specificity for the dehalogenase, the enzyme was found to require an hydroxyl group ortho to the halide. Inhibition studies indicate that the hydroxyl group is required for substrate binding. The carboxyl group can be replaced by other functionalities, e.g. acetyl or halide groups, ortho or meta to the chloride to be eliminated. The purified D. chlororespirans enzyme could dechlorinate an hydroxylated PCB (3,3,5,5-tetrachloro-4,4-biphenyldiol) at a rate about 1% of that with 3-chloro-4-hydroxybenzoate. Solvent deuterium isotope effect studies indicate that transfer of a single proton is partially rate-limiting in the dehalogenation reaction.
Gelatinous zooplankton play a crucial role in marine planktonic food webs. However, primarily due to methodological challenges, the in situ diet of zooplankton remains poorly investigated and little is known about their trophic interactions including feeding behaviour, prey selection and in situ feeding rates. This is particularly true for gelatinous zooplankton including the marine pelagic tunicate, Dolioletta gegenbauri. In this study, we applied an 18S rRNA amplicon metabarcoding approach to identify the diet of captive‐fed and wild‐caught D. gegenbauri on the midcontinental shelf of the South Atlantic Bight, USA. Sequencing‐based approaches were complimented with targeted quantitative real‐time polymerase chain reaction (PCR) analyses. Captive‐fed D. gegenbauri gut content was dominated by pico‐, nano‐ and micro‐plankton including pico‐dinoflagellates (picozoa) and diatoms. These results suggested that diatoms were concentrated by D. gegenbauri relative to their concentration in the water column. Analysis of wild‐caught doliolids by quantitative real‐time PCR utilizing a group‐specific diatom primer set confirmed that diatoms were concentrated by D. gegenbauri, particularly by the gonozooid life stage associated with actively developing blooms. Sequences derived from larger metazoans were frequently observed in wild‐caught animals but not in captive‐fed animals suggesting experimental bias associated with captive feeding. These studies revealed that the diet of D. gegenbauri is considerably more diverse than previously described, that parasites are common in wild populations, and that prey quality, quantity and parasites are likely all important factors in regulating doliolid population dynamics in continental shelf environments.
In high latitude planktonic ecosystems where the prymnesiophyte alga Phaeocystis pouchetii is often the dominant primary producer, its importance in structuring planktonic food webs is well known. In this study we investigated how the base of the planktonic food web responds to a P. pouchetii colony bloom in controlled mesocosm systems with natural water enclosed in situ in a West Norwegian fjord. Similar large (11 m 3 ) mesocosm studies were conducted in 2 successive years and the dynamics of various components of the planktonic food web from viruses to mesozooplankton investigated. In 2002 (4 to 24 March), 3 mesocosms comprising a control containing only fjord water; another with added nitrate (N) and phosphate (P) in Redfield ratios; and a third with added N, P, and cultured solitary cells of P. pouchetii, were monitored through a spring bloom cycle. In 2003 (27 February to 2 April) a similar set of mesocosms were established, but cultured P. pouchetii was not added. As expected, during both years, addition of N and P without addition of silicate resulted in an initial small diatom bloom followed by a colonial bloom of P. pouchetii (600 to 800 µg C l -1 ). However, the hypothesis that addition of solitary cells of P. pouchetii would enhance subsequent colony blooms was not supported. Interestingly, despite the large production of Phaeocystis colonial material, little if any was transferred to the grazing food web, as evidenced by non-significant effects on the biomass of micro-and mesozooplankton in fertilized mesocoms. Separate experiments utilizing material from the mesocosms showed that colonies formed from solitary cells at rates that required only ca. 1% conversion efficiencies. The results are discussed from the perspective of future research still required to understand the impact of life cycle changes of this enigmatic phytoplankter on surrounding ecosystems. KEY WORDS: Phaeocystis pouchetii · Mesocosms · Nutrients · Fjord · Biocomplexity Resale or republication not permitted without written consent of the publisherMar Ecol Prog Ser 321: 2006 gelatinous polysaccharide 'skin' (Chen et al. 2002). Solitary cells may be either motile or non-motile, and are typically 3 to 9 µm in diameter (Rousseau et al. 1994). This unusually large range of sizes between colonies and solitary cells (ca. 6 to 11 orders of magnitude in biovolume) can significantly alter material flow among trophic levels and export from the upper ocean (Wassmann et al. 1990, Lancelot et al. 1998. Furthermore, each stage is thought to function in different ways in order to reduce losses to either small or large zooplankton and viruses, and thus Phaeocystis spp. effectively function as dual species (Weisse et al. 1994, Smaal & Twisk 1997, Hamm et al. 1999, Jacobsen 2000, Verity 2000, Jakobsen & Tang 2002, Tang 2003.The dual life history of colonial and solitary cell stages was described over 50 yr ago (Kornmann 1955), and the dominant morphology appears to alter the ecosystem function from a regenerative system (solitary cells) ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.