Cellular signal transduction is predominantly based on protein interactions and their posttranslational modifications, which enable a fast response to input signals. Due to difficulties in designing new unique protein-protein interactions, designed cellular logic has focused on transcriptional regulation; however, this has a substantially slower response requiring transcription and translation. Here, we present a de novo design of modular, scalable signaling pathways based on proteolysis and designed coiled-coils (CC) implemented in mammalian cells. A set of split proteases with highly specific orthogonal cleavage motifs was constructed and combined with strategically positioned cleavage sites and designed orthogonal CC dimerizing domains of tunable affinity for competitive displacement after proteolytic cleavage. This enabled implementation of Boolean logic functions and signaling cascades in mammalian cells. Designed split proteasecleavable orthogonal CC-based logic (SPOC logic) circuits enable response to chemical or biological signals within minutes rather than hours, useful for diverse medical and nonmedical applications.
Synthetic scaffolds that permit spatial and temporal organization of enzymes in living cells are a promising post-translational strategy for controlling the flow of information in both metabolic and signaling pathways. Here, we describe the use of plasmid DNA as a stable, robust and configurable scaffold for arranging biosynthetic enzymes in the cytoplasm of Escherichia coli. This involved conversion of individual enzymes into custom DNA-binding proteins by genetic fusion to zinc-finger domains that specifically bind unique DNA sequences. When expressed in cells that carried a rationally designed DNA scaffold comprising corresponding zinc finger binding sites, the titers of diverse metabolic products, including resveratrol, 1,2-propanediol and mevalonate were increased as a function of the scaffold architecture. These results highlight the utility of DNA scaffolds for assembling biosynthetic enzymes into functional metabolic structures. Beyond metabolism, we anticipate that DNA scaffolds may be useful in sequestering different types of enzymes for specifying the output of biological signaling pathways or for coordinating other assembly-line processes such as protein folding, degradation and post-translational modifications.
Protein interactions guide the majority of cellular processes. Orthogonal hetero-specific proteinprotein interaction domains may facilitate better control of engineered biological systems. Here, we report a tunable de novo designed set of orthogonal coiled-coil (CC) peptide heterodimers (the NICP set) and its application for the regulation of diverse cellular processes, from cellular localization to transcriptional regulation. We demonstrate the application of CC pairs for multiplex localization in single cells and exploit the interaction strength and variable stoichiometry of CC peptides for tuning of gene transcription strength. A concatenated CC peptide tag (CCC-tag) was used to construct highly potent CRISPR/dCas9-based transcriptional activators and to amplify the response of light-and small-molecule inducible transcription in cell culture as well as in vivo. The NICP set and its implementations represent a valuable toolbox of minimally disruptive modules for the recruitment of versatile functional domains and regulation of cellular processes for synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.