The dimorphic organism Mucor circinelloides is currently being investigated as a potential host for heterologous protein production. The production of ethanol on pentose and hexose sugars was studied in submerged batch cultivations to further the general knowledge of Mucor physiology, with a view to the minimisation or elimination of the by-product ethanol for future process design. Large amounts of ethanol were produced during aerobic growth on glucose under non-oxygen limiting conditions, which is indicative of M. circinelloides being a Crabtree-positive organism. Ethanol production on galactose or xylose was less significant. The response of the organism to increased ethanol concentrations, both as the sole carbon source and in the presence of a sugar, was investigated in terms of biomass formation and morphology.
Mercury-reducing biofilms from packed-bed bioreactors treating nonsterile industrial effluents were shown to consist of a monolayer of bacteria by scanning electron microscopy. Droplets of several micrometers in diameter which accumulated outside of the bacterial cells were identified as elemental mercury by electrondispersive X-ray analysis. The monospecies biofilms of Pseudomonas putida Spi3 initially present were invaded by additional strains, which were identified to the species level by thermogradient gel electrophoresis (TGGE) and 16S rDNA sequencing. TGGE community fingerprints of the biofilms showed that they were composed of the effluent bacteria and did not contain uncultivable microorganisms. Of the 13 effluent bacterial strains, 2 were not mercury resistant, while all the others had resistance levels similar to or higher than the inoculant strain.
Aims: The life cycle of the dimorphic fungus Mucor circinelloides was studied in a temperature-controlled flowthrough cell, which constitutes an ideal tool when following the development of individual cells, with a view to understanding the growth and differentiation processes occurring in and between the different morphological forms of the organism. Methods and Results: Mycelial growth and the transformation of hyphae into chains of arthrospores were characterized by image analysis techniques and described quantitatively. The influence of the nature (glucose and xylose) and concentration of the carbon source on specific growth rate and hyphal growth unit length were studied. The organism branched more profusely on xylose than on glucose while the specific growth rates determined were rather similar. Methods were developed to study the yeast-like growth phase of M. circinelloides in the flow-through cell, and combined with fluorescent microscopy which allowed new insights to bud formation. Additionally, numbers and distribution of nuclei in arthrospores, hyphae and yeasts were studied.
Conclusions:The results give essential information on the morphological development of the organism. Significance and Impact of Study: Development of any industrial process utilizing this organism will be dependent on the information obtained here for effective process optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.