Monocytes/macrophages are critical in orchestrating the tissue-repair response. However, the mechanisms that govern macrophage regenerative activities during the sequential phases of repair are largely unknown. In the present study, we examined the dynamics and functions of diverse monocyte/macrophage phenotypes during the sequential stages of skin repair. By combining the analysis of a new CCR2-eGFP reporter mouse model with conditional mouse mutants defective in myeloid cell–restricted CCR2 signaling or VEGF-A synthesis, we show herein that among the large number of inflammatory CCR2+Ly6C+ macrophages that dominate the early stage of repair, only a small fraction strongly expresses VEGF-A that has nonredundant functions for the induction of vascular sprouts. The switch of macrophage-derived VEGF-A during the early stage of tissue growth toward epidermal-derived VEGF-A during the late stage of tissue maturation was critical to achieving physiologic tissue vascularization and healing progression. The results of the present study provide new mechanistic insights into CCR2-mediated recruitment of blood monocyte subsets into damaged tissue, the dynamics and functional consequences of macrophage plasticity during the sequential repair phases, and the complementary role of macrophage-derived VEGF-A in coordinating effective tissue growth and vascularization in the context of tissue-resident wound cells. Our findings may be relevant for novel monocyte-based therapies to promote tissue vascularization.
E ndothelial cells form the inner lining of all blood vessels and not only regulate transport of nutrients to the underlying tissue but also coordinate the formation of new blood vessels, a process termed angiogenesis. Therefore, endothelial cells are highly plastic cells that are capable of switching from a resting quiescent state in normal conduit blood vessels to a highly proliferative and migratory state when angiogenesis takes place. Resting quiescent endothelial cells are termed phalanx cells, 1 whereas migratory angiogenic endothelial cells are referred to as tip cells, which are followed by proliferating so-called stalk cells.2 Although the mechanisms regulating tip and stalk cell behavior have been extensively studied, relatively little is known about the control of the phalanx state.Shear stress, the force that laminar blood flow exerts on endothelial cells, is thought to be one of the factors that determine the quiescent state of endothelial cells.3 This biomechanical stimulus induces the expression of the transcription factor Krüppel-like factor 2 (KLF2), which orchestrates a network of genes that elicit a quiescent endothelial cell phenotype. 4,5 Among the factors that are upregulated by KLF2 are antiinflammatory and antithrombotic proteins, whereas proinflammatory and prothrombotic factors are downregulated by KLF2. 4 Although not all effects of shear stress on endothelial cells are mediated by KLF2, KLF2 coordinates approximately half of the gene expression programs evoked by shear stress. 5,6See accompanying editorial on page 13Recent studies have highlighted the importance of cellular metabolism for the control of endothelial cell phenotype. 7,8 Particularly, it was shown that angiogenic endothelial cells rely heavily on glycolysis for migration and proliferation. The enzyme PFKFB3 is a key regulator of glycolysis in endothelial cells that has been shown to promote angiogenic sprouting.9-11 However, how resting endothelial cells control © 2014 American Heart Association, Inc. Objective-Cellular metabolism was recently shown to regulate endothelial cell phenotype profoundly. Whether the atheroprotective biomechanical stimulus elicited by laminar shear stress modulates endothelial cell metabolism is not known. Approach and Results-Here, we show that laminar flow exposure reduced glucose uptake and mitochondrial content in endothelium. Shear stress-mediated reduction of endothelial metabolism was reversed by silencing the flow-sensitive transcription factor Krüppel-like factor 2 (KLF2). Endothelial-specific deletion of KLF2 in mice induced glucose uptake in endothelial cells of perfused hearts. KLF2 overexpression recapitulates the inhibitory effects on endothelial glycolysis elicited by laminar flow, as measured by Seahorse flux analysis and glucose uptake measurements. RNA sequencing showed that shear stress reduced the expression of key glycolytic enzymes, such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3), phosphofructokinase-1, and hexokinase 2 in a KLF2-dependent ma...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.