Due to its multifunctional character, nanocellulose (NC) is one of the most interesting nature-based nanomaterials and is attracting attention in a myriad of fields such as biomaterials, engineering, biomedicine, opto/electronic devices, nanocomposites, textiles, cosmetics and food products. Moreover, NC offers a plethora of outstanding properties, including inherent renewability, biodegradability, commercial availability, flexibility, printability, low density, high porosity, optical transparency as well as extraordinary mechanical, thermal and physicochemical properties. Consequently, NC holds unprecedented capabilities which are appealing to the scientific, technologic and industrial community. In this review, we highlight how NC is being tailored and applied in (bio)sensing technology, whose results aim at displaying analytical information related to various fields such as clinical/medical diagnostics, environmental monitoring, food 3 safety, physical/mechanical sensing, labeling and bioimaging applications. In fact, NCbased platforms could be considered an emerging technology to fabricate efficient, simple, cost-effective and disposable optical/electrical analytical devices for several (bio)sensing applications including health care, diagnostics, environmental monitoring, food quality control, forensic analysis and physical sensing. We foresee that many of the (bio)sensors which are currently based on plastic, glass or conventional paper platforms will be soon transferred to NC and this generation of (bio)sensing platforms could revolutionize the conventional sensing technology.
Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable.
A paper-based lateral flow immunoassay for pathogen detection that avoids the use of secondary antibodies and is revealed by the photoluminescence quenching ability of graphene oxide is reported. Escherichia coli has been selected as a model pathogen. The proposed device is able to display a highly specific and sensitive performance with a limit of detection of 10 CFU mL(-1) in standard buffer and 100 CFU mL(-1) in bottled water and milk. This low-cost disposable and easy-to-use device will prove valuable for portable and automated diagnostics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.