BackgroundAlzheimer’s disease (AD) is the most prevalent form of age-related dementia, and its effect on society increases exponentially as the population ages. Accumulating evidence suggests that neuroinflammation, mediated by the brain’s innate immune system, contributes to AD neuropathology and exacerbates the course of the disease. However, there is no experimental evidence for a causal link between systemic inflammation or neuroinflammation and the onset of the disease.MethodsThe viral mimic, polyriboinosinic-polyribocytidilic acid (PolyI:C) was used to stimulate the immune system of experimental animals. Wild-type (WT) and transgenic mice were exposed to this cytokine inducer prenatally (gestation day (GD)17) and/or in adulthood. Behavioral, immunological, immunohistochemical, and biochemical analyses of AD-associated neuropathologic changes were performed during aging.ResultsWe found that a systemic immune challenge during late gestation predisposes WT mice to develop AD-like neuropathology during the course of aging. They display chronic elevation of inflammatory cytokines, an increase in the levels of hippocampal amyloid precursor protein (APP) and its proteolytic fragments, altered Tau phosphorylation, and mis-sorting to somatodendritic compartments, and significant impairments in working memory in old age. If this prenatal infection is followed by a second immune challenge in adulthood, the phenotype is strongly exacerbated, and mimics AD-like neuropathologic changes. These include deposition of APP and its proteolytic fragments, along with Tau aggregation, microglia activation and reactive gliosis. Whereas Aβ peptides were not significantly enriched in extracellular deposits of double immune-challenged WT mice at 15 months, they dramatically increased in age-matched immune-challenged transgenic AD mice, precisely around the inflammation-induced accumulations of APP and its proteolytic fragments, in striking similarity to the post-mortem findings in human patients with AD.ConclusionChronic inflammatory conditions induce age-associated development of an AD-like phenotype in WT mice, including the induction of APP accumulations, which represent a seed for deposition of aggregation-prone peptides. The PolyI:C mouse model therefore provides a unique tool to investigate the molecular mechanisms underlying the earliest pathophysiological changes preceding fibrillary Aβ plaque deposition and neurofibrillary tangle formations in a physiological context of aging. Based on the similarity between the changes in immune-challenged mice and the development of AD in humans, we suggest that systemic infections represent a major risk factor for the development of AD.
Positron emission tomography (PET) imaging with radiotracers that target translocator protein 18 kDa (TSPO) has become a popular approach to assess putative neuroinflammatory processes and associated microglia activation in psychotic illnesses. It remains unclear, however, whether TSPO imaging can accurately capture low-grade inflammatory processes such as those present in schizophrenia and related disorders. Therefore, we evaluated the validity of TSPO as a disease-relevant marker of inflammation using a translational approach, which combined neurodevelopmental and neurodegenerative mouse models with PET imaging in patients with recent-onset schizophrenia and matched controls. Using an infection-mediated neurodevelopmental mouse model, we show that schizophrenia-relevant behavioral abnormalities and increased inflammatory cytokine expression are associated with reduced prefrontal TSPO levels. On the other hand, TSPO was markedly upregulated in a mouse model of acute neurodegeneration and reactive gliosis, which was induced by intrahippocampal injection of kainic acid. In both models, the changes in TSPO levels were not restricted to microglia but emerged in various cell types, including microglia, astrocytes and vascular endothelial cells. Human PET imaging using the second-generation TSPO radiotracer [C]DPA-713 revealed a strong trend towards reduced TSPO binding in the middle frontal gyrus of patients with recent-onset schizophrenia, who were previously shown to display increased levels of inflammatory cytokines in peripheral and central tissues. Together, our findings challenge the common assumption that central low-grade inflammation in schizophrenia is mirrored by increased TSPO expression or ligand binding. Our study further underscores the need to interpret altered TSPO binding in schizophrenia with caution, especially when measures of TSPO are not complemented with other markers of inflammation. Unless more selective microglial markers are available for PET imaging, quantification of cytokines and other inflammatory biomarkers, along with their molecular signaling pathways, may be more accurate in attempts to characterize inflammatory profiles in schizophrenia and other mental disorders that lack robust reactive gliosis.
Nanomaterial engineering provides an important technological advance that offers substantial benefits for applications not only in the production and processing, but also in the packaging and storage of food. An expanding commercialization of nanomaterials as part of the modern diet will substantially increase their oral intake worldwide. While the risk of particle inhalation received much attention, gaps of knowledge exist regarding possible adverse health effects due to gastrointestinal exposure. This problem is highlighted by pigment-grade titanium dioxide (TiO2), which confers a white color and increased opacity with an optimal particle diameter of 200–300 nm. However, size distribution analyses showed that batches of food-grade TiO2 always comprise a nano-sized fraction as inevitable byproduct of the manufacturing processes. Submicron-sized TiO2 particles, in Europe listed as E 171, are widely used as a food additive although the relevant risk assessment has never been satisfactorily completed. For example, it is not possible to derive a safe daily intake of TiO2 from the available long-term feeding studies in rodents. Also, the use of TiO2 particles in the food sector leads to highest exposures in children, but only few studies address the vulnerability of this particular age group. Extrapolation of animal studies to humans is also problematic due to knowledge gaps as to local gastrointestinal effects of TiO2 particles, primarily on the mucosa and the gut-associated lymphoid system. Tissue distributions after oral administration of TiO2 differ from other exposure routes, thus limiting the relevance of data obtained from inhalation or parenteral injections. Such difficulties and uncertainties emerging in the retrospective assessment of TiO2 particles exemplify the need for a fit-to-purpose data requirement for the future evaluation of novel nano-sized or submicron-sized particles added deliberately to food.
A great deal of interest in psychiatric research is currently centered upon the pathogenic role of inflammatory processes. Positron emission tomography (PET) using radiolabeled ligands selective for the 18 kDa translocator protein (TSPO) has become the most widely used technique to assess putative neuroimmune abnormalities in vivo. Originally used to detect discrete neurotoxic damages, TSPO has generally turned into a biomarker of 'neuroinflammation' or 'microglial activation'. Psychiatric research has mostly accepted these denotations of TSPO, even if they may be inadequate and misleading under many pathological conditions. A reliable and neurobiologically meaningful diagnosis of 'neuroinflammation' or 'microglial activation' is unlikely to be achieved by the sole use of TSPO PET imaging. It is also very likely that the pathological meanings of altered TSPO binding or expression are disease-specific, and therefore, not easily generalizable across different neuropathologies or inflammatory conditions. This difficulty is intricately linked to the varying (and still ill-defined) physiological functions and cellular expression patterns of TSPO in health and disease. While altered TSPO binding or expression may indeed mirror ongoing neuroinflammatory processes in some cases, it may reflect other pathophysiological processes such as abnormalities in cell metabolism, energy production and oxidative stress in others. Hence, the increasing popularity of TSPO PET imaging has paradoxically introduced substantial uncertainty regarding the nature and meaning of neuroinflammatory processes and microglial activation in psychiatry, and likely in other neuropathological conditions as well. The ambiguity of conceiving TSPO simply as a biomarker of 'neuroinflammation' or 'microglial activation' calls for alternative interpretations and complimentary approaches. Without the latter, the ongoing scientific efforts and excitement surrounding the role of the neuroimmune system in psychiatry may not turn into therapeutic hope for affected individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.