A balanced lipid metabolism is crucial for all cells. Disturbance of this homeostasis by nonphysiological intracellular accumulation of fatty acids can result in apoptosis. This was proven in animal studies and was correlated to some human diseases, like lipotoxic cardiomyopathy. Some metabolic mechanisms of lipo-apoptosis were described, and some causes were discussed, but reagents, which directly induce lipo-apoptosis, have thus far not been identified. The human monoclonal IgM antibody SAM-6 was isolated from a stomach cancer patient by using the conventional human hybridoma technology (trioma technique). The addition of SAM-6 to tumor cells leads to an increase in the intracellular accumulation of neutral lipids, followed by tumor cell apoptosis. The antibody SAM-6 does not react with noncancerous human epithelial and fibroblastic cells, because the M r 140,000 membrane molecule, recognized by the antibody, is specifically expressed on human malignant cells. The antibody is coded by the germ-line genes IgHV3-30.3*01 and IgLV3-1*01 and is a component of the innate immunity to cancer. In this article, we describe an antibodyinduced tumor-specific cell death, named lipoptosis. This is, to our knowledge, the first description of this specific form of lipo-apoptosis as an antibody-mediated mechanism of tumor cell killing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.