The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid-phase microextraction (HS-SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS-SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions--extraction temperature, incubation and exposure time--were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled-atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.