Protein reabsorption is a predominant feature of the renal proximal tubule. Animal studies show that the ability to rescue plasma proteins relies on the endocytic receptors megalin and cubilin. Recently, studies of patients with syndromes caused by dysfunctional receptors have supported the importance of these for protein clearance of human ultrafiltrate. This review focuses on the molecular biology and physiology of the receptors and their involvement in renal pathological conditions.
Cobalamin (Cbl, vitamin B(12)) is a bacterial organic compound and an essential coenzyme in mammals, which take it up from the diet. This occurs by the combined action of the gastric intrinsic factor (IF) and the ileal endocytic cubam receptor formed by the 460-kilodalton (kDa) protein cubilin and the 45-kDa transmembrane protein amnionless. Loss of function of any of these proteins ultimately leads to Cbl deficiency in man. Here we present the crystal structure of the complex between IF-Cbl and the cubilin IF-Cbl-binding-region (CUB(5-8)) determined at 3.3 A resolution. The structure provides insight into how several CUB (for 'complement C1r/C1s, Uegf, Bmp1') domains collectively function as modular ligand-binding regions, and how two distant CUB domains embrace the Cbl molecule by binding the two IF domains in a Ca(2+)-dependent manner. This dual-point model provides a probable explanation of how Cbl indirectly induces ligand-receptor coupling. Finally, the comparison of Ca(2+)-binding CUB domains and the low-density lipoprotein (LDL) receptor-type A modules suggests that the electrostatic pairing of a basic ligand arginine/lysine residue with Ca(2+)-coordinating acidic aspartates/glutamates is a common theme of Ca(2+)-dependent ligand-receptor interactions.
We report here the efficient genetic ablation of megalin, cubilin or both, using a Cre transgene driven by the Wnt4 promoter. The viable megalin/cubilin double-deficient mice now allow for detailed large-scale group analysis, and we anticipate that the mice will be of great value as an animal model for proximal tubulopathies with disrupted endocytosis.
This study demonstrated that megalin plays an essential role for human proximal tubular protein reabsorption and suggests that only limited amounts of albumin is normally filtered in the human glomeruli. Finally, we propose that the characteristic urinary protein profile of DB/FOAR patients may be utilized as a diagnostic marker of megalin dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.