The usage of cephalosporins for slaughter pigs may increase the prevalence of ESC E. coli in slaughter pigs. Meat may be a source of ESCs in humans, especially imported broiler meat. Selective enrichment should be considered as a supplementary surveillance method.
A major outbreak of canine distemper virus (CDV) in Danish farmed mink (Neovison vison) started in the late summer period of 2012. At the same time, a high number of diseased and dead wildlife species such as foxes, raccoon dogs, and ferrets were observed. To track the origin of the outbreak virus full-length sequencing of the receptor binding surface protein hemagglutinin (H) was performed on 26 CDV's collected from mink and 10 CDV's collected from wildlife species. Subsequent phylogenetic analyses showed that the virus circulating in the mink farms and wildlife were highly identical with an identity at the nucleotide level of 99.45% to 100%. The sequences could be grouped by single nucleotide polymorphisms according to geographical distribution of mink farms and wildlife. The signaling lymphocytic activation molecule (SLAM) receptor binding region in most viruses from both mink and wildlife contained G at position 530 and Y at position 549; however, three mink viruses had an Y549H substitution. The outbreak viruses clustered phylogenetically in the European lineage and were highly identical to wildlife viruses from Germany and Hungary (99.29% – 99.62%). The study furthermore revealed that fleas (Ceratophyllus sciurorum) contained CDV and that vertical transmission of CDV occurred in a wild ferret. The study provides evidence that wildlife species, such as foxes, play an important role in the transmission of CDV to farmed mink and that the virus may be maintained in the wild animal reservoir between outbreaks.
BackgroundAleutian Mink Disease (AMD) is an infectious disease of mink (Neovison vison) and globally a major cause of economic losses in mink farming. The disease is caused by Aleutian Mink Disease Virus (AMDV) that belongs to the genus Amdoparvovirus within the Parvoviridae family. Several strains have been described with varying virulence and the severity of infection also depends on the host’s genotype and immune status. Clinical signs include respiratory distress in kits and unthriftiness and low quality of the pelts. The infection can also be subclinical.Systematic control of AMDV in Danish mink farms was voluntarily initiated in 1976. Over recent decades the disease was mainly restricted to the very northern part of the country (Northern Jutland), with only sporadic outbreaks outside this region. Most of the viruses from this region have remained very closely related at the nucleotide level for decades. However, in 2015, several outbreaks of AMDV occurred at mink farms throughout Denmark, and the sources of these outbreaks were not known.MethodsPartial NS1 gene sequencing, phylogenetic analyses data were utilized along with epidemiological to determine the origin of the outbreaks.ResultsThe phylogenetic analyses of partial NS1 gene sequences revealed that the outbreaks were caused by two different clusters of viruses that were clearly different from the strains found in Northern Jutland. These clusters had restricted geographical distribution, and the variation within the clusters was remarkably low. The outbreaks on Zealand were epidemiologically linked and a close sequence match was found to two virus sequences from Sweden. The other cluster of outbreaks restricted to Jutland and Funen were linked to three feed producers (FP) but secondary transmissions between farms in the same geographical area could not be excluded.ConclusionThis study confirmed that partial NS1 sequencing can be used in outbreak tracking to determine major viral clusters of AMDV. Using this method, two new distinct AMDV clusters with low intra-cluster sequence diversity were identified, and epidemiological data helped to reveal possible ways of viral introduction into the affected herds.Electronic supplementary materialThe online version of this article (doi:10.1186/s12985-017-0786-5) contains supplementary material, which is available to authorized users.
BackgroundAleutian mink disease has major economic consequences on the mink farming industry worldwide, as it causes a disease that affects both the fur quality and the health and welfare of the mink. The virus causing this disease is a single-stranded DNA virus of the genus Amdoparvovirus belonging to the family of Parvoviridae. In Denmark, infection with AMDV has largely been restricted to a region in the northern part of the country since 2001, affecting only 5% of the total Danish mink farms. However, in 2015 outbreaks of AMDV were diagnosed in all parts of the country. Initial analyses revealed that the out breaks were caused by two different strains of AMDV that were significant different from the circulating Danish strains. To track the source of these outbreaks, a major investigation of global AMDV strains was initiated.MethodsSamples from 13 different countries were collected and partial NS1 gene was sequenced and subjected to phylogenetic analyses.ResultsThe analyses revealed that AMDV exhibited substantial genetic diversity. No clear country wise clustering was evident, but exchange of viruses between countries was revealed. One of the Danish outbreaks was caused by a strain of AMDV that closely resembled a strain originating from Sweden. In contrast, we did not identify any potential source for the other and more widespread outbreak strain.ConclusionTo the authors knowledge this is the first major global phylogenetic study of contemporary AMDV partial NS1 sequences. The study proved that partial NS1 sequencing can be used to distinguish virus strains belonging to major clusters. The partial NS1 sequencing can therefore be a helpful tool in combination with epidemiological data, in relation to outbreak tracking. However detailed information on farm to farm transmission requires full genome sequencing.Electronic supplementary materialThe online version of this article (10.1186/s12985-017-0898-y) contains supplementary material, which is available to authorized users.
BackgroundPre-weaning diarrhea in mink, also known as “sticky kits”, is a syndrome and outbreaks occur every year on commercial mink farms in all mink producing countries. Morbidity and mortality can be considerable on a farm with huge economic consequences for the farmer as well as compromised welfare for the mink kits. Although efforts have been taken to identify etiologic agents involved in outbreaks, the syndrome is still regarded as multifactorial and recurring problems on the same farms draw attention to management and environmental risk factors. In the pre-weaning period from May to June 2015, a case control study was carried out on 30 Danish mink farms. Data concerning management, biosecurity, hygiene, feed consumption, antibacterial prescription and production efficiency were analyzed.ResultsThe proportion of 1-year old females, farm size (total number of females), energy supply per female in the late gestation period, and dogs accessing the farm area were significantly associated with being a case farm. Case farms were prescribed almost twice the amount of antibacterials per gestational unit (female and litter) as in control farms. Farmers on case farms spent significantly more time nursing and treating the animals and experienced more females with mastitis compared to farmers on control farms. No significant differences in cleaning practices or hygienic measures between case and control farms were found and there were no differences in drinking water quality, bedding material, composition neither of color types nor in management regarding litter equalization.ConclusionsResults from this study showed an association between the occurrence of pre-weaning diarrhea on mink farms and parity profile, farm size and feeding intensity in the gestational period. The access of dogs to the farm area was a significant risk factor, but needs further clarification.Electronic supplementary materialThe online version of this article (doi:10.1186/s13028-017-0312-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.