Background Because birth size appears to be positively associated with breast cancer risk, we have studied whether this risk may differ according to molecular breast cancer subtypes. Methods A cohort of 22,931 women born 1920–1966 were followed up for breast cancer occurrence from 1961 to 2012, and 870 were diagnosed during follow-up. Archival diagnostic material from 537 patients was available to determine molecular breast cancer subtype, specified as Luminal A, Luminal B (human epidermal growth factor receptor 2 (HER2)-), Luminal B (HER2+), HER2 type, and Triple negative (TN) breast cancer. Information on the women’s birth weight, birth length and head circumference at birth was used to estimate hazard ratios (HR) with 95% confidence intervals (CI) for each molecular subtype, applying Cox regression, and stratified by maternal height. Results Birth length (per 2 cm increments) was positively associated with Luminal A (HR = 1.2, 95% CI, 1.0–1.3), Luminal B (HER2+) (HR = 1.3, 95% CI, 1.0–1.7), and TN breast cancer (HR = 1.4, 95% CI, 1.0–1.9). No clear association was found for birth weight and head circumference. The positive associations of birth length were restricted to women whose mothers were relatively tall (above population median). Conclusion We found a positive association of birth length with risk of Luminal A, Luminal B (HER2+) and TN breast cancer that appears to be restricted to women whose mothers were relatively tall. This may support the hypothesis that breast cancer risk is influenced by determinants of longitudinal growth and that this finding deserves further scrutiny.
There is an incomplete understanding of the underlying pathophysiology in hypertensive emergencies, where severely elevated blood pressure causes acute end-organ injuries, as opposed to the long-term manifestations of chronic hypertension. Furthermore, current biomarkers are unable to detect early end-organ injuries like hypertensive encephalopathy and renal thrombotic microangiopathy. We hypothesized that circulating microRNAs (c-miRs) could identify acute and chronic complications of severe hypertension, and that combinations of c-miRs could elucidate important pathways involved. We studied the diagnostic accuracy of 145 c-miRs in Dahl salt-sensitive rats fed either a low-salt (N = 20: 0.3% NaCl) or a high-salt (N = 60: 8% NaCl) diet. Subclinical hypertensive encephalopathy and thrombotic microangiopathy were diagnosed by histopathology. In addition, heart failure with preserved ejection fraction was evaluated with echocardiography and N-terminal pro-brain natriuretic peptide; and endothelial dysfunction was studied using acetylcholine-induced aorta ring relaxation. Systolic blood pressure increased severely in animals on a high-salt diet (high-salt 205 ± 20 mm Hg vs. low-salt 152 ± 18 mm Hg, p < 0.001). Partial least squares discriminant analysis revealed 68 c-miRs discriminating between animals with and without hypertensive emergency complications. Twenty-nine c-miRs were strongly associated with hypertensive encephalopathy, 24 c-miRs with thrombotic microangiopathy, 30 c-miRs with heart failure with preserved ejection fraction, and 28 c-miRs with endothelial dysfunction. Hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction were associated with deviations in many of the same c-miRs, whereas endothelial dysfunction was associated with a different set of c-miRs. Several of these c-miRs demonstrated fair to good diagnostic accuracy for a composite outcome of hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction in receiver-operating-curve analyses (area-under-curve 0.75–0.88). Target prediction revealed an enrichment of genes related to several pathways relevant for cardiovascular disease (e.g., mucin type O-glycan biosynthesis, MAPK, Wnt, Hippo, and TGF-beta signaling). C-miRs could potentially serve as biomarkers of severe hypertensive end-organ injuries and elucidate important pathways involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.