Previous archaeological mapping work on the successive medieval capitals of the Khmer Empire located at Angkor, in northwest Cambodia (∼9th to 15th centuries in the Common Era, C.E.), has identified it as the largest settlement complex of the preindustrial world, and yet crucial areas have remained unmapped, in particular the ceremonial centers and their surroundings, where dense forest obscures the traces of the civilization that typically remain in evidence in surface topography. Here we describe the use of airborne laser scanning (lidar) technology to create high-precision digital elevation models of the ground surface beneath the vegetation cover. We identify an entire, previously undocumented, formally planned urban landscape into which the major temples such as Angkor Wat were integrated. Beyond these newly identified urban landscapes, the lidar data reveal anthropogenic changes to the landscape on a vast scale and lend further weight to an emerging consensus that infrastructural complexity, unsustainable modes of subsistence, and climate variation were crucial factors in the decline of the classical Khmer civilization.Southeast Asia | urbanism | sustainability | resilience | water management
ABSTRACT. Sea-ice thickness and roughness data collected on three cruises in the Ross Sea, Antarctica, showed interseasonal, regional and interannual variability. Variability was reduced to season, or age of ice floe, when sea-ice roughness values from around Antarctica were compared.There were statistically significant correlations between mean snow elevation and mean ice thickness; snow surface roughness and mean ice thickness; and snow surface roughness and ice bottom roughness, which appeared to be independent of season, geographical location and deformation history of ice floes. Our field data indicate that ice thickness can be predicted from snow elevation measurements with higher accuracy in summer. The feasibility of using snow surface roughness to infer ice thickness and ice bottom roughness is promising, and can provide us with a means to study the thickness and underside of Antarctic sea ice at good spatial and temporal resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.