Immunoregulatory T cells of CD4 + CD25 + phenotype suppress T cell function and protect rodents from organ-specific autoimmune disease. The human counterpart of this subset of T cells expresses high levels of CD25 and its role in human autoimmune disorders is currently under intense investigation. In multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), the activation of circulating self-reactive T cells with specificity for myelin components is considered to be an important disease initiating event. Here, we investigated whether MS is associated with an altered ability of CD4 + CD25 high regulatory T cells (T reg ) to confer suppression of myelin-specific immune responses. Whereas T reg frequencies were equally distributed in blood and cerebrospinal fluid of MS patients and did not differ compared to healthy controls, the suppressive potency of patient-derived CD4 + CD25 high T lymphocytes was impaired. Their inhibitory effect on antigen-specific T cell proliferation induced by human recombinant myelin oligodendrocyte protein as well as on immune responses elicited by polyclonal and allogeneic stimuli was significantly reduced compared to healthy individuals. The effect was persistent and not due to responder cell resistance or altered survival of T reg , suggesting that a defective immunoregulation of peripheral T cells mediated by CD4 + CD25 high T lymphocytes promotes CNS autoimmunity in MS.
Background: Delayed food anaphylaxis upon consumption of red meat is attributed to specific IgE-antibodies directed to galactose-α-1,3-galactose (α-Gal). Anaphylactic reactions may occur after ingestion of meat from different mammals, mainly beef and pork, but reactions to lamb, rabbit or horse have also been reported. In particular, pork kidney has been shown to trigger symptoms that were more severe and occurred within a shorter delay. The objective of the present study was the identification and characterization of pork kidney proteins carrying α-Gal carbohydrates and mediating delayed allergic reactions through specific IgE to α-Gal. Materials and methods: A cohort of 59 patients with specific IgE to α-Gal was screened by immunoblot for IgE-reactive proteins in pork kidney extract. Proteins were purified by affinity chromatography and identified by Edman sequencing and peptide mass fingerprinting. Isolated proteins were used in immunoassays using patient sera and α-Gal specific antibodies. Allergenicity was assayed in basophil activation and skin prick test. Results: Multiple IgE-binding proteins were detected in protein extracts of pork kidney by immunoblot using patient sera and an anti-α-Gal antibody. Reactive bands were located in the high molecular weight range of 100 to ≥200 kDa. Two major IgE-binding proteins were identified as porcine angiotensin I converting enzyme (ACE I) and aminopeptidase N (AP-N). IgE-binding to both proteins was lost by periodate treatment, resulting in oxidation of carbohydrates. Addition of α-Gal inhibited IgE-reactivity to both peptidases. Allergenicity was confirmed by activation of patient basophils and positive skin prick tests. Conclusions: Two IgE-reactive cell membrane peptidases carrying α-Gal epitopes were identified in pork kidney, a tissue which is known as potent inducer of red meat-induced anaphylaxis. Allergenicity and clinical relevance of these proteins were confirmed in patients with delayed anaphylaxis to red meat by skin prick test and basophil activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.