Coxsackie adenovirus receptor (CAR) is the primary receptor to which oncolytic adenoviruses have to bind for internalization and viral replication. A total of 171 neuroendocrine lung tumors in form of multitissue arrays have been analyzed resulting in a positivity of 112 cases (65.5%). Immunostaining correlated statistically significant with histopathology and development of recurrence. The subtype small cell lung cancer (SCLC) showed the highest CAR expression (77.6%), moreover the CAR level was correlated to the disease-free survival. Further, high CAR expression level in SCLC cell lines was found in vitro and in vivo when cell lines had been transplanted into immunodeficient mice. A correlation between CAR expression in the primary tumors and metastases development in the tumor model underlined the clinical relevance. Cell lines with high CAR level showed a high infectivity when infected with a replication-deficient adenovirus. Low levels of CAR expression in SCLC could be upregulated with Trichostatin A, a histone deacetylase inhibitor. As a result of the unaltered poor prognosis of SCLC and its high CAR expression it seems to be the perfect candidate for oncolytic therapy. With our clinically relevant tumor model, we show that xenograft experiments are warrant to test the efficiency of oncolytic adenoviral therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.