Highlights d Cities possess a consistent ''core'' set of non-human microbes d Urban microbiomes echo important features of cities and city-life d Antimicrobial resistance genes are widespread in cities d Cities contain many novel bacterial and viral species
Microbial diversity studies based on metagenomic sequencing have greatly enhanced our knowledge of the microbial world. However, one caveat is the fact that not all microorganisms are equally well detected, questioning the universality of this approach. Firmicutes are known to be a dominant bacterial group. Several Firmicutes species are endospore formers and this property makes them hardy in potentially harsh conditions, and thus likely to be present in a wide variety of environments, even as residents and not functional players. While metagenomic libraries can be expected to contain endospore formers, endospores are known to be resilient to many traditional methods of DNA isolation and thus potentially undetectable. In this study we evaluated the representation of endospore-forming Firmicutes in 73 published metagenomic datasets using two molecular markers unique to this bacterial group (spo0A and gpr). Both markers were notably absent in well-known habitats of Firmicutes such as soil, with spo0A found only in three mammalian gut microbiomes. A tailored DNA extraction method resulted in the detection of a large diversity of endospore-formers in amplicon sequencing of the 16S rRNA and spo0A genes. However, shotgun classification was still poor with only a minor fraction of the community assigned to Firmicutes. Thus, removing a specific bias in a molecular workflow improves detection in amplicon sequencing, but it was insufficient to overcome the limitations for detecting endospore-forming Firmicutes in whole-genome metagenomics. In conclusion, this study highlights the importance of understanding the specific methodological biases that can contribute to improve the universality of metagenomic approaches.
In this study, we developed and validated a cultureindependent method for diversity surveys to specifically detect endospore-forming Firmicutes. The global transcription regulator of sporulation (spo0A) was identified as a gene marker for endosporeforming Firmicutes. To enable phylogenetic classification, we designed a set of primers amplifying a 602 bp fragment of spo0A that we evaluated in pure cultures and environmental samples. The amplification was positive for 35 strains from 11 genera, yet negative for strains from Alicyclobacillus and Sulfobacillus. We also evaluated various DNA extraction methods because endospores often result in reduced yields. Our results demonstrate that procedures utilizing increased physical force improve DNA extraction. An optimized DNA extraction method on biomass pre-extracted from the environmental sample source (indirect DNA extraction) followed by amplification with the aforementioned primers for spo0A was then tested in sediments from two different sources. Specifically, we validated our cultureindependent diversity survey methodology on a set of 8338 environmental spo0A sequences obtained from the sediments of Lakes Geneva (Switzerland) and Baikal (Russia). The phylogenetic affiliation of the environmental sequences revealed a substantial number of new clades within endospore-formers. This novel culture-independent approach provides a significant experimental improvement that enables exploration of the diversity of endospore-forming Firmicutes.
Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active growth could be expected, and phylotypes that are most likely in the state of endospores, in all the sites. In summary, our results suggest that diversified survival strategies, including sporulation and metabolic adaptations, explain the biological success of EFF in geothermal and natural springs, and that multiple extreme environmental factors favor the prevalence of EFF.
We present a method for the physical isolation of endospores from environmental samples allowing the specific targeting of endospore-forming bacteria for sequencing (endospore-enriched community). The efficiency of the method was tested on lake sediment samples. After 16S rRNA gene amplicon sequencing, the composition in the endospore-enriched community was compared with the community from untreated control samples (whole community). In the whole community, Firmicutes had a relative abundance of 8% and 19% in the two different lake sediments. In contrast, in the endospore-enriched community, Firmicutes abundance increased to 90.6% and 83.9%, respectively, confirming the efficiency of the endospore enrichment. The relative abundance of other microbial groups that form spore-like resisting states (i.e. actinobacteria, cyanobacteria and myxococcales) was below 2% in the endospore-enriched community, indicating that the method is adapted to true endospores. Representatives from two out of the three known classes of Firmicutes (Bacilli and Clostridia) were detected and supposedly asporogenic groups (e.g. Ethanoligenes and Trichococcus) could be detected. The method presented here is a leap forward for ecological studies of endospore-forming Firmicutes. It can be applied to other types of samples in order to reveal the diversity and metabolic potential of this bacterial group in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.