The coastal areas near thermal or nuclear plants are subject to hot water discharges produced by cooling processes. These activities induce an increase of the temperature near the outlet vicinity, which can extend for miles. The temperature variation affects the metabolic rate of organisms and the level of dissolved oxygen. Cooling by cold water from an additional discharge can be considered in order to limit this thermal pollution. This paper present a methodology based on the implementation of a two-dimensional numerical model to study the dynamic of the temperature originated from the industrial discharges. Moreover the optimal injection rate of cold water is sought to keep the water temperature as close as possible to the survival of the ecosystem. Numerical simulations are performed to illustrate the efficiency approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.