Diagnosing relapse after radiotherapy for lung cancer is challenging. The specificity of both CT and 2-deoxy-2-[ 18 F]fluoro-D-glucose (FDG)-PET/CT is low due to radiation-induced changes. 3'-deoxy-3'-[ 18 F]fluorothymidine (FLT)-PET has previously demonstrated higher specificity for malignancy than FDG-PET. We investigated the value of FLT-PET/CT for diagnosing relapse in irradiated lung cancer.Methods: Patients suspected for relapse of lung cancer after definitive radiotherapy (conventional fractionated radiotherapy (cRT) or stereotactic radiotherapy (SBRT)) were included.Sensitivity and specificity were analysed within the irradiated high-dose volume (HDV) and patient-based.Marginal differences and inter-observer agreement were assessed.Results: Sixty-three patients who had received radiotherapy in 70 HDVs (34 cRT; 36 SBRT) were included.
FDG-PET/CT is a well documented and widespread used imaging modality for the diagnosis and staging of patient with lung cancer. FDG-PET/CT is increasingly used for the assessment of treatment effects during and after chemotherapy. However, PET is not an accepted surrogate end-point for assessment of response rate in clinical trials. The aim of this review is to present current evidence on the use of PET in response evaluation of patients with lung cancer and to introduce the pearls and pitfalls of the PET-technology relating to response assessment. Based on this and relating to validation criteria, including stable technology, standardization, reproducibility and broad availability, the review discusses why, despite numerous studies on response assessment indicating a possible role for FDG-PET/CT, PET still has no place in guidelines relating to response evaluation in lung cancer.
Many studies have suggested a prognostic value of one or several positron emission tomography (PET) parameters in patients with small cell lung cancer (SCLC). However, studies are often small, and there is a considerable interstudy disagreement about which PET parameters have a prognostic value. The objective of this study was to perform a review and meta-analysis to identify the most promising PET parameter for prognostication. PubMed®, Cochrane, and Embase® were searched for papers addressing the prognostic value of any PET parameter at any treatment phase with any endpoint in patients with SCLC. Pooled hazard ratios (HRs) were calculated by a random effects model for the prognostic value of the baseline maximum standardized uptake value (SUVmax) and metabolic tumor volume (MTV). The qualitative analysis included 38 studies, of these, 19 studies were included in the meta-analyses. The pooled results showed that high baseline MTV was prognostic for overall survival (OS) (HR: 2.83 (95% confidence interval [CI]: 2.00–4.01) and progression-free survival (PFS) (HR: 3.11 (95% CI: 1.99–4.90)). The prognostic value of SUVmax was less pronounced (OS: HR: 1.50 (95% CI: 1.17–1.91); PFS: HR: 1.24 (95% CI: 0.94–1.63)). Baseline MTV is a strong prognosticator for OS and PFS in patients with SCLC. MTV has a prognostic value superior to those of other PET parameters, but whether MTV is superior to other prognosticators of tumor burden needs further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.