Shaikh A. Nurmohamed 11 | Neubury M. Lardy 12 | Wendy Swelsen 12 | Karlijn A. M. I. van der Pant 2 | Neelke C. van der Weerd 2 | Ineke J. M. ten Berge 2 |This is an open access article under the terms of the Creat ive Commo ns Attri bution-NonCo mmercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
The best treatment for patients with end-stage renal disease is kidney transplantation. Although graft survival rates have improved in the last decades, patients still may lose their grafts partly due to the detrimental effects of donor-specific antibodies (DSA) against human leukocyte antigens (HLA) and to a lesser extent also by antibodies directed against non-HLA antigens expressed on the donor endothelium. Assays to detect anti-HLA antibodies are already in use for many years and have been proven useful for transplant risk stratification. Currently, there is a need for assays to additionally detect multiple non-HLA antibodies simultaneously in order to study their clinical relevance in solid organ transplantation. This study describes the development, technical details and validation of a high-throughput multiplex assay for the detection of antibodies against 14 non-HLA antigens coupled directly to MagPlex microspheres or indirectly via a HaloTag. The non-HLA antigens have been selected based on a literature search in patients with kidney disease or following transplantation. Due to the flexibility of the assay, this approach can be used to include alternative antigens and can also be used for screening of other organ transplant recipients, such as heart and lung.
CD59 is a complement regulatory protein that inhibits membrane attack complex formation. A soluble form of CD59 (sCD59) is present in various body fluids and is associated with cellular damage after acute myocardial infarction. Lung transplantation (LTx) is the final treatment for end-stage lung diseases, however overall survival is hampered by chronic lung allograft dysfunction development, which presents itself obstructively as the bronchiolitis obliterans syndrome (BOS). We hypothesized that, due to cellular damage and activation during chronic inflammation, sCD59 serum levels can be used as biomarker preceding BOS development. We analyzed sCD59 serum concentrations in 90 LTx patients, of whom 20 developed BOS. We observed that BOS patients exhibited higher sCD59 serum concentrations at the time of diagnosis compared to clinically matched non-BOS patients (p = 0.018). Furthermore, sCD59 titers were elevated at 6 months post-LTx (p = 0.0020), when patients had no BOS-related symptoms. Survival-analysis showed that LTx patients with sCD59 titers ≥400 pg/ml 6 months post-LTx have a significant (p < 0.0001) lower chance of BOS-free survival than patients with titers ≤400 pg/ml, 32% vs. 80% respectively, which was confirmed by multivariate analysis (hazard ratio 6.2, p < 0.0001). We propose that circulating sCD59 levels constitute a novel biomarker to identify patients at risk for BOS following LTx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.