A method connecting single cell genomic or transcriptomic profiles to functional cellular characteristics, in particular time-varying phenotypic changes, would be transformative for single cell and cancer biology. Here, we present fSCS: functional single cell selection. This technology combines a custom-built ultrawide field-of-view optical screening microscope, fast automated image analysis and a new photolabeling method, phototagging, using a newly synthesized visible-light-photoactivatable dye. Using fSCS, we screen, selectively photolabel and isolate cells of interest from large heterogeneous populations based on functional dynamics like fast migration, morphological variation, small molecule uptake or cell division. We combined fSCS with single cell RNA sequencing for functionally annotated transcriptomic profiling of fast migrating and spindle-shaped MCF10A cells with or without TGFβ induction. We identified critical genes and pathways driving aggressive migration as well as mesenchymal-like morphology that could not be detected with state-of-the-art single cell transcriptomic analysis. fSCS provides a crucial upstream selection paradigm for single cell sequencing independent of biomarkers, allows enrichment of rare cells and can facilitate the identification and understanding of molecular mechanisms underlying functional phenotypes.
BackgroundDown-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene.Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane.ResultsThe synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences.Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures.Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes.In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues.ConclusionsWe developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated promoters in sugarcane tissues. The strategies used to design the synthetic luciferase transgenes could be applied to other transgenes that are aggressively silenced in sugarcane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.