Drosophila inhibitor of apoptosis (IAP) 1 (DIAP1) is an E3 ubiquitin ligase that regulates apoptosis in flies, in large part through direct inhibition and/or ubiquitinylation of caspases. IAP antagonists, such as Reaper, Hid, and Grim, are thought to induce cell death by displacing active caspases from baculovirus IAP repeat domains in DIAP1, but can themselves become targets of DIAP1-mediated ubiquitinylation. Herein, we demonstrate that Grim self-associates in cells and is ubiquitinylated by DIAP1 at Lys136 in an UbcD1-dependent manner, resulting in its rapid turnover. K48-linked ubiquitin chains are added almost exclusively to BIR2-bound Grim as a result of its structural proximity to DIAP1's RING domain. However, active caspases can simultaneously cleave Grim at Asp132, removing the lysine necessary for ubiquitinylation as well as any existing ubiquitin conjugates. Cleavage therefore enhances the stability of Grim and initiates a feed-forward caspase amplification loop, resulting in greater cell death. In summary, Grim is a caspase substrate whose cleavage promotes apoptosis by limiting, in a target-specific fashion, its ubiquitinylation and turnover by the proteasome.
The initiation of endoplasmic reticulum (ER) stress has been suggested to play potential roles in hepatocarcinogenesis. However, many obstacles remain as to whether ER stress plays a role in carcinogenesis or tumoricide. This study sought to identify the signals that can serve as anticancer effectors in cells in response to ER stress. Tunicamycin (an N-glycosylation inhibitor) inhibited cell proliferation with IC(50) values of 0.19 and 0.62 microg/ml in hepatoma (Hep) 3B and HepG2 cells, respectively. It induced G1 arrest of the cell cycle in both cell lines. The anticancer mechanism of tunicamycin was investigated in Hep3B cells. Tunicamycin induced a rapid decline of cyclin D1 and cyclin A expression and an early increase of glucose-related protein (GRP) 78 and growth arrest and DNA damage-inducible transcription factor (GADD) 153 levels. Cyclin A was the most sensitive regulator to tunicamycin-triggered degradation mechanism. The association of p27(Kip1) with cyclin D1/cyclin-dependent kinase (Cdk) 4 was also increased by tunicamycin. The inhibition of GADD153 expression by transfection of GADD153 antisense did not modify tunicamycin-induced G1 arrest and cyclin/Cdk expressions. The knockdown of GRP78 expression by the siRNA transfection technique moderately increased tunicamycin-induced apoptosis but not the antiproliferative effect by sulforhodamine B assay. We suggest that tunicamycin induces G1 arrest through down-regulation of cyclins and Cdks, in which cyclin A is more susceptible to ER stress-triggered degradation mechanism in Hep3B cells. The increased association of p27(Kip1) with cyclin D1/Cdk4 may also contribute to tunicamycin-induced cell-cycle arrest. GADD153 and GRP78 play a minor role in tunicamycin-mediated antiproliferative effect, although GRP78 moderately inhibits apoptosis in Hep3B cells. These data provide evidence that cell-cycle regulators are susceptible factors in hepatocellular carcinoma (HCC) responsive to ER stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.